Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics

被引:50
作者
Carrillo, J. A. [1 ]
Hittmeir, S. [2 ]
Volzone, B. [3 ]
Yao, Y. [4 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Univ Napoli Parthenope, Dipartimento Ingn, I-80143 Naples, Italy
[4] Georgia Inst Technol, Sch Math, 686 Cherry St, Atlanta, GA 30332 USA
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
KELLER-SEGEL MODEL; PREVENTING BLOW-UP; INTERACTING PARTICLES; GLOBAL EXISTENCE; NONLOCAL MODEL; CRITICAL MASS; SYMMETRIZATION; SYSTEM; CHEMOTAXIS; CONVERGENCE;
D O I
10.1007/s00222-019-00898-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrization techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations
引用
收藏
页码:889 / 977
页数:89
相关论文
共 89 条
  • [81] Critical dynamics of self-gravitating Langevin particles and bacterial populations
    Sire, Clement
    Chavanis, Pierre-Henri
    [J]. PHYSICAL REVIEW E, 2008, 78 (06):
  • [82] Sugiyama Y, 2007, DIFFER INTEGRAL EQU, V20, P133
  • [83] TALENTI G, 1985, B UNIONE MAT ITAL, V4B, P917
  • [84] Talenti G., 1976, ANN SCUOLA NORM SU 4, V3, P697
  • [85] Talenti G., 1994, Nonlinear Analysis, Function Spaces and Applications, V5, P177
  • [86] A nonlocal continuum model for biological aggregation
    Topaz, Chad M.
    Bertozzi, Andrea L.
    Lewis, Mark A.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (07) : 1601 - 1623
  • [87] Vázquez JL, 2005, ADV NONLINEAR STUD, V5, P87
  • [88] VAZQUEZ JL, 1982, CR ACAD SCI I-MATH, V295, P71
  • [89] Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type
    Vazquez, Juan Luis
    Volzone, Bruno
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (05): : 553 - 582