Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics

被引:50
作者
Carrillo, J. A. [1 ]
Hittmeir, S. [2 ]
Volzone, B. [3 ]
Yao, Y. [4 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Univ Napoli Parthenope, Dipartimento Ingn, I-80143 Naples, Italy
[4] Georgia Inst Technol, Sch Math, 686 Cherry St, Atlanta, GA 30332 USA
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
KELLER-SEGEL MODEL; PREVENTING BLOW-UP; INTERACTING PARTICLES; GLOBAL EXISTENCE; NONLOCAL MODEL; CRITICAL MASS; SYMMETRIZATION; SYSTEM; CHEMOTAXIS; CONVERGENCE;
D O I
10.1007/s00222-019-00898-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrization techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations
引用
收藏
页码:889 / 977
页数:89
相关论文
共 89 条
  • [1] ON OPTIMIZATION PROBLEMS WITH PRESCRIBED REARRANGEMENTS
    ALVINO, A
    TROMBETTI, G
    LIONS, PL
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (02) : 185 - 220
  • [2] Ambrosio L., 2005, Metric Spaces and in the Space of Probability Measures
  • [3] A User's Guide to Optimal Transport
    Ambrosio, Luigi
    Gigli, Nicola
    [J]. MODELLING AND OPTIMISATION OF FLOWS ON NETWORKS, CETRARO, ITALY 2009, 2013, 2062 : 1 - 155
  • [4] [Anonymous], 1998, CLASSICS MATH
  • [5] [Anonymous], 1986, Ann. Sc. Norm. Super. Pisa Cl. Sci.
  • [6] [Anonymous], 2010, FUNCTIONAL ANAL
  • [7] [Anonymous], MESSENGER MATH
  • [8] [Anonymous], 2007, Oxford Mathematical Monographs
  • [9] [Anonymous], ARXIV171111291
  • [10] [Anonymous], 2008, Parabolic and Navier-Stokes Equations. Part2, DOI DOI 10.4064/BC81-0-32