Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: A review

被引:102
作者
Awang, N. [1 ,2 ]
Ismail, A. F. [1 ,2 ]
Jaafar, J. [1 ,2 ]
Matsuura, T. [1 ,3 ]
Junoh, H. [1 ,2 ]
Othman, M. H. D. [1 ,2 ]
Rahman, M. A. [1 ,2 ]
机构
[1] Univ Teknol Malaysia, Adv Membrane Technol Res Ctr AMTEC, Utm Skudai 81310, Johor Bahru, Malaysia
[2] Univ Teknol Malaysia, Fac Petr & Renewable Energy Engn, Utm Skudai 81310, Johor Bahru, Malaysia
[3] Univ Ottawa, Dept Chem Engn, Ottawa, ON K1N 6N5, Canada
关键词
Functionalization; Proton exchange membranes; Direct methanol fuel cell; Electra spinning; PROTON-EXCHANGE MEMBRANE; ELECTROLYTE MEMBRANES; COMPOSITE MEMBRANES; BLENDS; NANOFIBERS; DMFC; PBI; POLYELECTROLYTES; MORPHOLOGY; STATE;
D O I
10.1016/j.reactfunctpolym.2014.09.019
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A coherent review on the advanced proton exchange membranes (PEMs) for direct methanol fuel cell (DMFC) application and the future direction in the development of a high performance polymeric membrane for DMFC were discussed in this paper. PEMs have a profound influence on performance of DMFC. The PEMs are categorized into five groups which are partially fluorinated, perfluorinated ionomers, acid-base complexes, non-fluorinated ionomers, hydro carbon and aromatic polymers. Many researchers have investigated the functionalization methods on the PEMs to solve methanol crossover problem while obtaining low electronic conductivity, high proton conductivity, low electro osmotic drag coefficient, high mechanical properties and good chemical and thermal stability. Including in this review, fabrication of PEM using electrospinning process coupled with the promising functionalized polymeric materials which were known to be the most important initiatives at present in order to further expand the full potential of DMFC performance. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 258
页数:11
相关论文
共 80 条
[1]  
Anton F., 1934, US patent, Patent No. [US1975504A, 1975504, 1975504A]
[2]   Proton exchange membranes based on the short-side-chain perfluorinated ionomer for high temperature direct methanol fuel cells [J].
Arico, A. S. ;
Baglio, V. ;
Di Blasi, A. ;
Antonucci, V. ;
Cirillo, L. ;
Ghielmi, A. ;
Arcella, V. .
DESALINATION, 2006, 199 (1-3) :271-273
[3]  
Arico A.S., 2009, Electrocatalysis of Direct Methanol Fuel Cells
[4]   Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells [J].
Arnett, Natalie Y. ;
Harrison, William L. ;
Adami, Arland S. B. ;
Roy, Abhishek ;
Lane, Ozma ;
Cromer, Frank ;
Dong, Limin ;
McGrath, James E. .
JOURNAL OF POWER SOURCES, 2007, 172 (01) :20-29
[5]   Aliphatic/aromatic polyimide lonomers as a proton conductive membrane for fuel cell applications [J].
Asano, N ;
Aoki, M ;
Suzuki, S ;
Miyatake, K ;
Uchida, H ;
Watanabe, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1762-1769
[6]   THE ROLE OF PARTIAL MISCIBILITY ON THE PROPERTIES OF BLENDS OF A POLYETHERIMIDE AND 2 LIQUID-CRYSTALLINE POLYMERS [J].
BAFNA, SS ;
SUN, T ;
BAIRD, DG .
POLYMER, 1993, 34 (04) :708-715
[7]   Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties [J].
Baji, Avinash ;
Mai, Yiu-Wing ;
Wong, Shing-Chung ;
Abtahi, Mojtaba ;
Chen, Pei .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (05) :703-718
[8]   Grafted porous PTFE/partially fluorinated sulfonated poly(arylene ether ketone) composite membrane for PEMFC applications [J].
Bi, Cheng ;
Zhang, Huamin ;
Xiao, Shaohua ;
Zhang, Yu ;
Mai, Zhensheng ;
Li, Xianfeng .
JOURNAL OF MEMBRANE SCIENCE, 2011, 376 (1-2) :170-178
[9]   A thermodynamic approach to proton conductivity in acid-doped polybenzimidazole [J].
Bouchet, R ;
Miller, S ;
Duclot, M ;
Souquet, JL .
SOLID STATE IONICS, 2001, 145 (1-4) :69-78
[10]  
Boys C.V., 1887, LOND EDIN DUBL PHILO, V23, P489