GCNNIRec: Graph Convolutional Networks with Neighbor Complex Interactions for Recommendation

被引:0
|
作者
Mei, Teng [1 ]
Sun, Tianhao [1 ]
Chen, Renqin [1 ]
Zhou, Mingliang [1 ]
Hou, Leong U. [2 ]
机构
[1] Chongqing Univ, Chongqing 400044, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City, Taipa 999078, Macau, Peoples R China
来源
关键词
Recommender system; Graph neural networks; Neighbor interactions;
D O I
10.1007/978-3-030-85899-5_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, tremendous efforts have been made to explore features contained in user-item graphs for recommendation based on Graph Neural Networks (GNN). However, most existing recommendation methods based on GNN use weighted sum of directly-linked node's features only, assuming that neighboring nodes are independent individuals, neglecting possible correlations between neighboring nodes, which may result in failure of capturing co-occurrence signals. Therefore, in this paper, we propose a novel Graph Convolutional Network with Neighbor complex Interactions for Recommendation (GCNNIRec) focused upon capturing possible co-occurrence signals between node neighbors. Specifically, two types of modules, the Linear-Aggregator module and the InteractionAggregator module are both inside GCNNIRec. The former module linearly aggregates the features of neighboring nodes to obtain the representation of target node. The latter utilizes the interactions between neighbors to aggregate the co-occurrence features of nodes to capture co-occurrence features. Furthermore, empirical results on three real datasets confirm not only the state-of-the-art performance of GCNNIRec but also the performance gains achieved by introducing Interaction-Aggregator module into GNN.
引用
收藏
页码:338 / 347
页数:10
相关论文
共 50 条
  • [31] Overlapping community detection on complex networks with Graph Convolutional Networks
    Yuan, Shunjie
    Zeng, Hefeng
    Zuo, Ziyang
    Wang, Chao
    COMPUTER COMMUNICATIONS, 2023, 199 : 62 - 71
  • [32] Explainable Recommendation Based on Weighted Knowledge Graphs and Graph Convolutional Networks
    Boughareb, Rima
    Seridi, Hassina
    Beldjoudi, Samia
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2023, 22 (03)
  • [33] A Collaborative Graph Convolutional Networks and Learning Styles Model for Courses Recommendation
    Zhu, Junyi
    Wang, Liping
    Liu, Yanxiu
    Chen, Ping-Kuo
    Zhang, Guodao
    COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2022, PT I, 2022, 460 : 360 - 377
  • [34] Self-Attention Based Sequential Recommendation With Graph Convolutional Networks
    Seng, Dewen
    Wang, Jingchang
    Zhang, Xuefeng
    IEEE ACCESS, 2024, 12 : 32780 - 32787
  • [35] Sequence-Aware Service Recommendation Based on Graph Convolutional Networks
    Xiao, Gang
    Wang, Cece
    Wang, Qibing
    Song, Junfeng
    Lu, Jiawei
    2024 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS, CITS 2024, 2024, : 180 - 186
  • [36] Heterogeneous Multi-Behavior Recommendation Based on Graph Convolutional Networks
    Rang, Ran
    Xing, Linlin
    Zhang, Longbo
    Cai, Hongzhen
    Sun, Zhaojie
    IEEE ACCESS, 2023, 11 : 22574 - 22584
  • [37] LGRec:A group recommendation method based on graph convolutional neural networks
    Jiang, Pingsheng
    Lin, Bing
    Zhang, Xun
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1343 - 1349
  • [38] Dual attentive graph convolutional networks for cross-domain recommendation
    Zhang, Yu
    Liu, Fan
    Hu, Yupeng
    Li, Xiaoli
    Dong, Xiangjun
    Cheng, Zhiyong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (05) : 7367 - 7378
  • [39] HS-GCN: Hamming Spatial Graph Convolutional Networks for Recommendation
    Liu, Han
    Wei, Yinwei
    Yin, Jianhua
    Nie, Liqiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5977 - 5990
  • [40] Accurate and Scalable Graph Convolutional Networks for Recommendation Based on Subgraph Propagation
    Li, Xueqi
    Xiao, Guoqing
    Chen, Yuedan
    Li, Kenli
    Cong, Gao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 7556 - 7568