Integrating Triangle and Jaccard similarities for recommendation

被引:50
作者
Sun, Shuang-Bo [1 ]
Zhang, Zhi-Heng [2 ]
Dong, Xin-Ling [1 ]
Zhang, Heng-Ru [1 ]
Li, Tong-Jun [3 ]
Zhang, Lin [1 ]
Min, Fan [1 ]
机构
[1] Southwest Petr Univ, Sch Comp Sci, Chengdu 610500, Sichuan, Peoples R China
[2] Southwest Petr Univ, Sch Sci, Chengdu 610500, Sichuan, Peoples R China
[3] Zhejiang Ocean Univ, Sch Math Phys & Informat Sci, Zhoushan 316022, Peoples R China
基金
中国国家自然科学基金;
关键词
3-WAY DECISION; DISTANCE; MODEL;
D O I
10.1371/journal.pone.0183570
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper proposes a new measure for recommendation through integrating Triangle and Jaccard similarities. The Triangle similarity considers both the length and the angle of rating vectors between them, while the Jaccard similarity considers non co-rating users. We compare the new similarity measure with eight state-of-the-art ones on four popular datasets under the leave-one-out scenario. Results show that the new measure outperforms all the counterparts in terms of the mean absolute error and the root mean square error.
引用
收藏
页数:16
相关论文
共 47 条
[1]   A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem [J].
Ahn, Hyung Jun .
INFORMATION SCIENCES, 2008, 178 (01) :37-51
[2]  
[Anonymous], 1999, P 1 ACM C EL COMM DE
[3]  
[Anonymous], 2002, NIPS
[4]  
[Anonymous], 2003, Proceedings of international ACM SIGIR conference on Research and development in informaion retrieval, DOI DOI 10.1145/860435.860483
[5]  
[Anonymous], P 26 INT JOINT C ART
[6]  
[Anonymous], 1994, P 1994 ACM C COMPUTE
[7]   A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition [J].
Belen Barragans-Martinez, Ana ;
Costa-Montenegro, Enrique ;
Burguillo, Juan C. ;
Rey-Lopez, Marta ;
Mikic-Fonte, Fernando A. ;
Peleteiro, Ana .
INFORMATION SCIENCES, 2010, 180 (22) :4290-4311
[8]  
Bhattacharyya A, 1942, B CALCUTTA MATH SOC, V35, P99
[9]  
Billsus D, 1998, MACHINE LEARNING
[10]   Item-based top-N recommendation algorithms [J].
Deshpande, M ;
Karypis, G .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) :143-177