Effect of adverse pressure gradients on turbulent wing boundary layers

被引:69
作者
Tanarro, A. [1 ,2 ]
Vinuesa, R. [1 ,2 ]
Schlatter, P. [1 ,2 ]
机构
[1] KTH Mech, Linne FLOW Ctr, SE-10044 Stockholm, Sweden
[2] SeRC, Stockholm, Sweden
关键词
turbulence simulation; DIRECT NUMERICAL-SIMULATION; FLOW; EQUILIBRIUM; AIRFOIL;
D O I
10.1017/jfm.2019.838
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The characteristics of turbulent boundary layers (TBLs) subjected to adverse pressure gradients are analysed through well-resolved large-eddy simulations. The geometries under study are the NACA0012 and NACA4412 wing sections, at 0 degrees and 5 degrees angle of attack, respectively, both of them at a Reynolds number based on inflow velocity and chord length of Re-c = 400 000. The turbulence statistics show that adverse pressure gradients (APGs) have a significant effect on the mean velocity, velocity fluctuations and turbulent kinetic energy budget, and this effect is more prominent on the outer region of the boundary layer. Furthermore, the effect of flow history is assessed by means of an integrated Clauser pressure-gradient parameter (beta) over bar (Vinuesa et al., Flow Turbul. Combust., vol. 99, 2017, pp. 565-587), through the study of cases with matching local values of beta and the friction Reynolds number Re-tau to isolate this effect. Our results show a noticeable effect of the flow history on the outer region, however the differences in the near-wall peak of the tangential velocity fluctuations appear to be mostly produced by the local APG magnitude. The one-dimensional power-spectral density shows energetic small scales in the outer region of APG TBLs, whereas these energetic scales do not appear in zero-pressure-gradient (ZPG) TBLs, suggesting that small scales near the wall are advected towards the outer layer by the APG. Moreover, the linear coherence spectra show that the spectral outer peak of high-Reynolds-number ZPG TBLs is highly correlated with the near-wall region (Baars et al., J. Fluid Mech., vol. 823, 2017, R2), unlike APG TBLs which do not show such a correlation. This result, together with the different two-dimensional spectra of APG and high-Reynolds-number ZPG TBLs, suggests different energisation mechanisms due to APG and increase in Reynolds number. To the authors' knowledge, this is the first in-depth analysis of the TBL characteristics over wings, including detailed single-point statistics, spectra and coherence.
引用
收藏
页数:28
相关论文
共 52 条
[1]   Self-similarity of wall-attached turbulence in boundary layers [J].
Baars, Woutijn J. ;
Hutchins, Nicholas ;
Marusic, Ivan .
JOURNAL OF FLUID MECHANICS, 2017, 823 :R2
[2]   History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers [J].
Bobke, A. ;
Vinuesa, R. ;
Orlu, R. ;
Schlatter, P. .
JOURNAL OF FLUID MECHANICS, 2017, 820 :667-692
[3]   Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers [J].
Chandran, Dileep ;
Baidya, Rio ;
Monty, Jason P. ;
Marusic, Ivan .
JOURNAL OF FLUID MECHANICS, 2017, 826 :R1
[4]  
Clauser F. H., 1956, TURBULENT BOUNDARY L, P1, DOI [10.1016/S0065-2156(08)70370-3, DOI 10.1016/S0065-2156(08)70370-3]
[5]   TURBULENT BOUNDARY LAYERS IN ADVERSE PRESSURE GRADIENTS [J].
CLAUSER, FH .
JOURNAL OF THE AERONAUTICAL SCIENCES, 1954, 21 (02) :91-108
[6]   FLYING HOT-WIRE STUDY OF FLOW PAST AN NACA 4412 AIRFOIL AT MAXIMUM LIFT [J].
COLES, D ;
WADCOCK, AJ .
AIAA JOURNAL, 1979, 17 (04) :321-329
[7]   THE LAW OF THE WAKE IN THE TURBULENT BOUNDARY LAYER [J].
COLES, D .
JOURNAL OF FLUID MECHANICS, 1956, 1 (02) :191-226
[8]   Scaling of the energy spectra of turbulent channels [J].
Del Alamo, JC ;
Jiménez, J ;
Zandonade, P ;
Moser, RD .
JOURNAL OF FLUID MECHANICS, 2004, 500 :135-144
[9]   A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains [J].
Dong, S. ;
Karniadakis, G. E. ;
Chryssostomidis, C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 261 :83-105
[10]   Simulation and validation of a spatially evolving turbulent boundary layer up to Reθ=8300 [J].
Eitel-Amor, Georg ;
Orlu, Ramis ;
Schlatter, Philipp .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2014, 47 :57-69