ESTIMATION OF GLOBAL NET PRIMARY PRODUCTIVITY FROM 1981 TO 2018 WITH REMOTE SENSING DATA

被引:6
作者
Sun, Rui [1 ,2 ]
Wang, Juanmin [1 ,2 ,3 ]
Xiao, Zhiqiang [1 ,2 ]
Zhu, Anran [1 ,2 ]
Wang, Mengjia [1 ,2 ]
Yu, Tao [1 ,2 ]
机构
[1] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Fac Geog Sci, Beijing Engn Res Ctr Global Land Remote Sensing P, Beijing 100875, Peoples R China
[3] Meteorol Bur Nanhai Dist, Foshan 528200, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
基金
国家重点研发计划;
关键词
carbon cycle; climate change; net primary productivity; GLASS; GROSS PRIMARY PRODUCTION; SATELLITE; MODEL; NPP;
D O I
10.1109/IGARSS39084.2020.9323555
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The long time series vegetation productivity products are of great significance to the research of increasing CO2 and global changes. In this paper, global net primary productivity (NPP) in 1981-2018 was firstly estimated with Global LAnd Surface Satellite (GLASS) data , ERA-Interim meteorological data and the other variables by using the improved Multi-source data Synergized Quantitative (MuSyQ) NPP algorithm. The average global NPP is 61.0 PgC/yr in 1981-2018, which is in great agreement with the other similar products. The global NPP has shown a significant increase trend, with an annual growth rate of 0.10 PgC/yr over the past 38 years. NPP in the northern hemisphere and southern hemisphere account for 62.0% and 38.0% of the global respectively, both show an increasing trend. The overall increasing trends in NPP are also consistent among most of the biomes.
引用
收藏
页码:4331 / 4334
页数:4
相关论文
共 24 条
[1]  
Allen SK, 2013, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
[2]   Climate-driven uncertainties in modeling terrestrial gross primary production: a site level to global-scale analysis [J].
Barman, Rahul ;
Jain, Atul K. ;
Liang, Miaoling .
GLOBAL CHANGE BIOLOGY, 2014, 20 (05) :1394-1411
[3]   Comparing global models of terrestrial net primary productivity (NPP): overview and key results [J].
Cramer, W ;
Kicklighter, DW ;
Bondeau, A ;
Moore, B ;
Churkina, G ;
Nemry, B ;
Ruimy, A ;
Schloss, AL .
GLOBAL CHANGE BIOLOGY, 1999, 5 :1-15
[4]   Estimating Vegetation Primary Production in the Heihe River Basin of China with Multi-Source and Multi-Scale Data [J].
Cui, Tianxiang ;
Wang, Yujie ;
Sun, Rui ;
Qiao, Chen ;
Fan, Wenjie ;
Jiang, Guoqing ;
Hao, Lvyuan ;
Zhang, Lei .
PLOS ONE, 2016, 11 (04)
[5]  
Lieth H., 1975, PRIMARY PRODUCTIVITY
[6]   A process-based boreal ecosystem productivity simulator using remote sensing inputs [J].
Liu, J ;
Chen, JM ;
Cihlar, J ;
Park, WM .
REMOTE SENSING OF ENVIRONMENT, 1997, 62 (02) :158-175
[7]   Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates [J].
McGuire, AD ;
Melillo, JM ;
Kicklighter, DW ;
Joyce, LA .
JOURNAL OF BIOGEOGRAPHY, 1995, 22 (4-5) :785-796
[8]   Climate-driven increases in global terrestrial net primary production from 1982 to 1999 [J].
Nemani, RR ;
Keeling, CD ;
Hashimoto, H ;
Jolly, WM ;
Piper, SC ;
Tucker, CJ ;
Myneni, RB ;
Running, SW .
SCIENCE, 2003, 300 (5625) :1560-1563
[9]   OBSERVATIONS AND MODELING OF BIOMASS AND SOIL ORGANIC-MATTER DYNAMICS FOR THE GRASSLAND BIOME WORLDWIDE [J].
PARTON, WJ ;
SCURLOCK, JMO ;
OJIMA, DS ;
GILMANOV, TG ;
SCHOLES, RJ ;
SCHIMEL, DS ;
KIRCHNER, T ;
MENAUT, JC ;
SEASTEDT, T ;
MOYA, EG ;
KAMNALRUT, A ;
KINYAMARIO, JI .
GLOBAL BIOGEOCHEMICAL CYCLES, 1993, 7 (04) :785-809
[10]   Net primary production of terrestrial ecosystems from 2000 to 2009 [J].
Potter, Christopher ;
Klooster, Steven ;
Genovese, Vanessa .
CLIMATIC CHANGE, 2012, 115 (02) :365-378