A data mining framework for building a web-page recommender system

被引:7
作者
Haruechaiyasak, C [1 ]
Shyu, ML [1 ]
Chen, SC [1 ]
机构
[1] NECTEC, RDI, Pathum Thani 12120, Thailand
来源
PROCEEDINGS OF THE 2004 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI-2004) | 2004年
关键词
D O I
10.1109/IRI.2004.1431487
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new framework based on data mining algorithms for building a Web-page recommender system. A recommender system is an intermediary program (or an agent) with a user interface that automatically and intelligently generates a list of information which suits an individual's needs. Two information filtering methods for providing the recommended information are considered: (1) by analyzing the information content, i.e., content-based filtering, and (2) by referencing other user access behaviors, i.e., collaborative filtering. By using the data mining algorithms, the information filtering processes can be performed prior to the actual recommending process. As a result, the system response time could be improved and thus, making the framework scalable.
引用
收藏
页码:357 / 362
页数:6
相关论文
共 14 条
  • [1] [Anonymous], P 5 ACM C DIG LIBR S
  • [2] Fab: Content-based, collaborative recommendation
    Balabanovic, M
    Shoham, Y
    [J]. COMMUNICATIONS OF THE ACM, 1997, 40 (03) : 66 - 72
  • [3] Basu C, 1998, FIFTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-98) AND TENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICAL INTELLIGENCE (IAAI-98) - PROCEEDINGS, P714
  • [4] Data mining: An overview from a database perspective
    Chen, MS
    Han, JW
    Yu, PS
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1996, 8 (06) : 866 - 883
  • [5] FAYYAD UM, 1996, ADV KNOWLEDGE DISCOV
  • [6] HARUECHAIYASAK C, 2003, THESIS U MIAMI
  • [7] HARUECHAIYASAK C, 2004, IN PRESS INT J COMPU
  • [8] MAES P, 1994, COMMUN ACM, V37, P31, DOI 10.1145/176789.176792
  • [9] Sarwar B, 2001, P 10 INT C WORLD WID, P285, DOI 10.1145/371920.372071
  • [10] Schafer J., 2001, DATA MIN KNOWL DISC, V5, P115, DOI DOI 10.1023/A:1009804230409