Error analysis of non inf-sup stable discretizations of the time-dependent Navier-Stokes equations with local projection stabilization

被引:26
作者
de Frutos, Javier [1 ]
Garcia-Archilla, Bosco [2 ]
John, Volker [3 ,4 ]
Novo, Julia [5 ]
机构
[1] Univ Valladolid, Inst Invest Matemat IMUVA, Valladolid, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, Seville, Spain
[3] Leibniz Inst Forsch Verbund Berlin eV WIAS, Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[4] Free Univ Berlin, Dept Math & Comp Sci, Arnimallee 6, D-14195 Berlin, Germany
[5] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
关键词
local projection stabilization; Navier-Stokes equations; non inf-sup stable mixed finite elements; APPROXIMATION; INTERPOLATION;
D O I
10.1093/imanum/dry044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies non inf-sup stable finite element approximations to the evolutionary Navier-Stokes equations. Several local projection stabilization (LPS) methods corresponding to different stabilization terms are analyzed, thereby separately studying the effects of the different stabilization terms. Error estimates are derived in which the constants are independent of inverse powers of the viscosity. For one of the methods, using velocity and pressure finite elements of degree l, it will be proved that the velocity error in L-infinity (0, T; L-2(Omega)) decays with rate l + 1/2 in the case that nu <= h, with being the dimensionless viscosity and being the mesh width. In the analysis of another method it was observed that the convective term can be bounded in an optimal way with the LPS stabilization of the pressure gradient. Numerical studies confirm the analytical results.
引用
收藏
页码:1747 / 1786
页数:40
相关论文
共 23 条
[1]  
Adams R. A., 1975, PURE APPL MATH, V65
[2]   Analysis of a Full Space-Time Discretization of the Navier-Stokes Equations by a Local Projection Stabilization Method [J].
Ahmed, Naveed ;
Chacon Rebollo, Tomas ;
John, Volker ;
Rubino, Samuele .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) :1437-1467
[3]  
ARNDT D, 2016, ARXIV160900807MATHNA
[4]   Local Projection FEM Stabilization for the Time-Dependent Incompressible Navier-Stokes Problem [J].
Arndt, Daniel ;
Dallmann, Helene ;
Lube, Gert .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) :1224-1250
[5]   On stabilized finite element methods based on the Scott-Zhang projector. Circumventing the inf-sup condition for the Stokes problem [J].
Badia, Santiago .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 247 :65-72
[6]   A finite element pressure gradient stabilization for the Stokes equations based on local projections [J].
Becker, R ;
Braack, M .
CALCOLO, 2001, 38 (04) :173-199
[7]   A local regularization operator for triangular and quadrilateral finite elements [J].
Bernardi, C ;
Girault, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) :1893-1916
[8]   The discrete commutator property of approximation spaces [J].
Bertoluzza, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (12) :1097-1102
[9]  
Brenner SC., 2008, The Mathematical Theory of Finite Element Methods
[10]   Continuous interior penalty finite element method for the time-dependent Navier-Stokes equations:: space discretization and convergence [J].
Burman, Erik ;
Fernandez, Miguel A. .
NUMERISCHE MATHEMATIK, 2007, 107 (01) :39-77