Existence of gradient Kahler-Ricci solitons

被引:0
作者
Cao, HD
机构
来源
ELLIPTIC AND PARABOLIC METHODS IN GEOMETRY | 1996年
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the existence of gradient Kahler-Ricci solitons on various spaces. These solitons are all rotationally symmetric and the noncompact ones are of nonnegative sectional curvature.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
[41]   An existence time estimate for Kahler-Ricci flow [J].
Chau, Albert ;
Li, Ka-Fai ;
Tam, Luen-Fai .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 :699-707
[42]   Twisted and conical Kahler-Ricci solitons on Fano manifolds [J].
Jin, Xishen ;
Liu, Jiawei ;
Zhang, Xi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) :2396-2421
[43]   The moduli space of Fano manifolds with Kahler-Ricci solitons [J].
Inoue, Eiji .
ADVANCES IN MATHEMATICS, 2019, 357
[44]   Fano Manifolds with Weak almost Kahler-Ricci Solitons [J].
Wang, Feng ;
Zhu, Xiaohua .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (09) :2437-2464
[45]   BERGMAN KERNELS FOR A SEQUENCE OF ALMOST KAHLER-RICCI SOLITONS [J].
Jiang, Wenshuai ;
Wang, Feng ;
Zhu, Xiaohua .
ANNALES DE L INSTITUT FOURIER, 2017, 67 (03) :1279-1320
[46]   VARIATION OF COMPLEX STRUCTURES AND THE STABILITY OF KAHLER-RICCI SOLITONS [J].
Hall, Stuart J. ;
Murphy, Thomas .
PACIFIC JOURNAL OF MATHEMATICS, 2013, 265 (02) :441-454
[47]   COUPLED KAHLER-RICCI SOLITONS ON TORIC FANO MANIFOLDS [J].
Hultgren, Jakob .
ANALYSIS & PDE, 2019, 12 (08) :2067-2094
[48]   Uniqueness of shrinking gradient Kahler-Ricci solitons on non-compact toric manifolds [J].
Cifarelli, Charles .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04) :3746-3791
[49]   Classification of Generalized Kahler-Ricci Solitons on Complex Surfaces [J].
Streets, Jeffrey ;
Ustinovskiy, Yury .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (09) :1896-1914
[50]   A new holomorphic invariant and uniqueness of Kahler-Ricci solitons [J].
Tian, G ;
Zhu, XH .
COMMENTARII MATHEMATICI HELVETICI, 2002, 77 (02) :297-325