Existence of gradient Kahler-Ricci solitons

被引:0
作者
Cao, HD
机构
来源
ELLIPTIC AND PARABOLIC METHODS IN GEOMETRY | 1996年
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the existence of gradient Kahler-Ricci solitons on various spaces. These solitons are all rotationally symmetric and the noncompact ones are of nonnegative sectional curvature.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
[31]   EXPANDING KAHLER-RICCI SOLITONS COMING OUT OF KAHLER CONES [J].
Conlon, Ronan J. ;
Deruelle, Alix .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 115 (02) :303-365
[32]   Rotational symmetry of conical Kahler-Ricci solitons [J].
Chodosh, Otis ;
Fong, Frederick Tsz-Ho .
MATHEMATISCHE ANNALEN, 2016, 364 (3-4) :777-792
[33]   Non-Kahler Ricci flow singularities modeled on Kahler-Ricci solitons [J].
Isenberg, James ;
Knopf, Dan ;
Sesum, Natasa .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2019, 15 (02) :749-784
[34]   On the vanishing of the holomorphic invariants for Kahler-Ricci solitons [J].
Saito, Shunsuke .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (03) :57-59
[35]   GENERALIZATIONS OF KAHLER-RICCI SOLITONS ON PROJECTIVE BUNDLES [J].
Maschler, Gideon ;
Tonnesen-Friedman, Christina W. .
MATHEMATICA SCANDINAVICA, 2011, 108 (02) :161-176
[36]   Rigidity of κ-noncollapsed steady Kahler-Ricci solitons [J].
Deng, Yuxing ;
Zhu, Xiaohua .
MATHEMATISCHE ANNALEN, 2020, 377 (1-2) :847-861
[37]   Compactness of Kahler-Ricci solitons on Fano manifolds [J].
Guo, Bin ;
Phong, Duong H. ;
Song, Jian ;
Sturm, Jacob .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) :305-316
[38]   On the convergence of the modified Kahler-Ricci flow and solitons [J].
Phong, D. H. ;
Song, Jian ;
Sturm, Jacob ;
Weinkove, Ben .
COMMENTARII MATHEMATICI HELVETICI, 2011, 86 (01) :91-112
[39]   GRADIENT KAHLER RICCI SOLITONS [J].
Bryant, Robert L. .
ASTERISQUE, 2008, (321) :51-97
[40]   LONGTIME EXISTENCE OF THE KAHLER-RICCI FLOW ON Cn [J].
Chau, Albert ;
Li, Ka-Fai ;
Tam, Luen-Fai .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (08) :5747-5768