Existence of gradient Kahler-Ricci solitons

被引:0
作者
Cao, HD
机构
来源
ELLIPTIC AND PARABOLIC METHODS IN GEOMETRY | 1996年
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the existence of gradient Kahler-Ricci solitons on various spaces. These solitons are all rotationally symmetric and the noncompact ones are of nonnegative sectional curvature.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
[21]   ON CALABI EXTREMAL KAHLER-RICCI SOLITONS [J].
Calamai, Simone ;
Petrecca, David .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (02) :813-821
[22]   Variational stability of Kahler-Ricci solitons [J].
Pali, Nefton .
ADVANCES IN MATHEMATICS, 2016, 290 :15-35
[23]   Existence of Kahler-Ricci solitons on smoothable Q-Fano varieties [J].
Li, Yan .
ADVANCES IN MATHEMATICS, 2021, 391
[24]   Uniqueness of Kahler-Ricci solitons on compact Kahler manifolds [J].
Tian, G ;
Zhu, XH .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11) :991-995
[25]   Remarks on shrinking gradient Kahler-Ricci solitons with positive bisectional curvature [J].
Wu, Guoqiang ;
Zhang, Shijin .
COMPTES RENDUS MATHEMATIQUE, 2016, 354 (07) :713-716
[26]   Classification of gradient Kahler-Ricci solitons with vanishing B-tensor [J].
Yang, Fei ;
Zhang, Liangdi .
JOURNAL OF GEOMETRY AND PHYSICS, 2020, 147
[27]   The existence of the Kahler-Ricci soliton degeneration [J].
Blum, Harold ;
Liu, Yuchen ;
Xu, Chenyang ;
Zhuang, Ziquan .
FORUM OF MATHEMATICS PI, 2023, 11
[28]   Kahler-Ricci solitons on toric Fano orbifolds [J].
Shi, Yalong ;
Zhu, Xiaohua .
MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) :1241-1251
[29]   KAHLER-RICCI SOLITONS ON CERTAIN TORIC BUNDLES [J].
Nakagawa, Yasuhiro .
KYUSHU JOURNAL OF MATHEMATICS, 2019, 73 (02) :379-390
[30]   EXPANDING KAHLER-RICCI SOLITONS COMING OUT OF KAHLER CONES [J].
Conlon, Ronan J. ;
Deruelle, Alix .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 115 (02) :303-365