KNOTS, SLIPKNOTS, AND EPHEMERAL KNOTS IN RANDOM WALKS AND EQUILATERAL POLYGONS

被引:15
作者
Millett, Kenneth C. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
关键词
Knots; slipknots; random walks; equilateral polygons; SELF-AVOIDING WALKS; ENTANGLEMENT COMPLEXITY; SCALING BEHAVIOR; TOPOLOGY; PROTEINS; POLYMER; SPACE;
D O I
10.1142/S0218216510008078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The probability that a random walk or polygon in the 3-space or in the simple cubic lattice contains a knot goes to one at the length goes to infinity. Here, we prove that this is also true for slipknots consisting of unknotted portions, called the slipknot, that contain a smaller knotted portion, called the ephemeral knot. As is the case with knots, we prove that any topological knot type occurs as the ephemeral knotted portion of a slipknot.
引用
收藏
页码:601 / 615
页数:15
相关论文
共 17 条
  • [1] The Length Scale of 3-Space Knots, Ephemeral Knots, and Slipknots in Random Walks
    Millett, Kenneth C.
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2011, (191): : 182 - 191
  • [2] Tie knots, random walks and topology
    Fink, TMA
    Mao, Y
    PHYSICA A, 2000, 276 (1-2): : 109 - 121
  • [3] Knots in finite memory walks
    Horwath, Eric
    Clisby, Nathan
    Virnau, Peter
    29TH WORKSHOP ON RECENT DEVELOPMENTS IN COMPUTER SIMULATION STUDIES IN CONDENSED MATTER PHYSICS, 2016, 750
  • [4] The Generation of Random Equilateral Polygons
    Alvarado, Sotero
    Calvo, Jorge Alberto
    Millett, Kenneth C.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 143 (01) : 102 - 138
  • [5] New complex topology (knots and slipknots) in membrane proteins
    Sulkowska, J. I.
    FEBS JOURNAL, 2014, 281 : 205 - 205
  • [6] Knot probabilities in equilateral random polygons
    Xiong, A.
    Taylor, A. J.
    Dennis, M. R.
    Whittington, S. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (40)
  • [7] Generating random walks and polygons with stiffness in confinement
    Diao, Y.
    Ernst, C.
    Saarinen, S.
    Ziegler, U.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (09)
  • [8] Predicting optimal lengths of random knots
    Dobay, A
    Sottas, PE
    Dubochet, J
    Stasiak, A
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 55 (03) : 239 - 247
  • [9] Predicting Optimal Lengths of Random Knots
    Akos Dobay
    Pierre-Edouard Sottas
    Jacques Dubochet
    Andrzej Stasiak
    Letters in Mathematical Physics, 2001, 55 : 239 - 247
  • [10] Global knotting in equilateral random polygons
    Diao, Y
    Nardo, JC
    Sun, Y
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (04) : 597 - 607