Spectral-clustering approach to Lagrangian vortex detection

被引:128
作者
Hadjighasem, Alireza [1 ]
Karrasch, Daniel [1 ]
Teramoto, Hiroshi [2 ]
Haller, George [1 ]
机构
[1] ETH, Inst Mech Syst, Dept Mech & Proc Engn, Leonhardstr 21, CH-8092 Zurich, Switzerland
[2] Hokkaido Univ, Res Inst Elect Sci, Mol & Life Nonlinear Sci Lab, Kita Ku, Kita 20 Nishi 10, Sapporo, Hokkaido 0010020, Japan
关键词
ALMOST-INVARIANT SETS; COHERENT STRUCTURES; TRANSPORT; VORTICES; CUT; DYNAMICS; BARRIERS;
D O I
10.1103/PhysRevE.93.063107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract coherent vortices from the graph using tools from spectral graph theory. Our method locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking. We illustrate the performance of this technique by identifying coherent Lagrangian vortices in several two-and three-dimensional flows.
引用
收藏
页数:17
相关论文
共 50 条
[21]   Lagrangian visualization of mixing enhancement induced by finite-time stretching in compressible vortex interaction [J].
Zheng, Zhonghua ;
Fan, Zhouqin ;
Wang, Zi'ang ;
Yu, Bin ;
Zhang, Bin ;
He, Miaosheng .
JOURNAL OF VISUALIZATION, 2021, 24 (01) :19-28
[22]   SPECTRAL CLUSTERING IN HETEROGENEOUS NETWORKS [J].
Sengupta, Srijan ;
Chen, Yuguo .
STATISTICA SINICA, 2015, 25 (03) :1081-1106
[23]   Sleep Stages Clustering Using Time and Spectral Features of EEG Signals An Unsupervised Approach [J].
Rodriguez-Sotelo, J. L. ;
Osorio-Forero, A. ;
Jimenez-Rodriguez, A. ;
Restrepo-de-Mejia, F. ;
Peluffo-Ordonez, D. H. ;
Serrano, J. .
NATURAL AND ARTIFICIAL COMPUTATION FOR BIOMEDICINE AND NEUROSCIENCE, PT I, 2017, 10337 :444-455
[24]   A remark on Controlled Lagrangian approach [J].
Shiriaev, Anton S. ;
Freidovich, Leonid B. ;
Spong, Mark W. .
EUROPEAN JOURNAL OF CONTROL, 2013, 19 (06) :438-444
[25]   A coherent structure approach for parameter estimation in Lagrangian Data Assimilation [J].
Maclean, John ;
Santitissadeekorn, Naratip ;
Jones, Christopher K. R. T. .
PHYSICA D-NONLINEAR PHENOMENA, 2017, 360 :36-45
[26]   Ecological implications of eddy retention in the open ocean: a Lagrangian approach [J].
d'Ovidio, Francesco ;
De Monte, Silvia ;
Della Penna, Alice ;
Cotte, Cedric ;
Guinet, Christophe .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (25)
[27]   The Approach to Vortex Reconnection [J].
R. Tebbs ;
A. J. Youd ;
C. F. Barenghi .
Journal of Low Temperature Physics, 2011, 162 :314-321
[28]   Study of contrail microphysics in the vortex phase with a Lagrangian particle tracking model [J].
Unterstrasser, S. ;
Soelch, I. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (20) :10003-10015
[29]   Vortex identification in turbulent flows past plates using the Lagrangian method [J].
Attiya, Bashar ;
Liu, I-Han ;
Altimemy, Muhannad ;
Daskiran, Cosan ;
Oztekin, Alparslan .
CANADIAN JOURNAL OF PHYSICS, 2019, 97 (08) :895-910
[30]   A Lagrangian Analysis of Vortex Formation in the Wake behind a Transversely Oscillating Cylinder [J].
Wang, Wenhao ;
Prants, Sergey V. ;
Zhang, Jiazhong ;
Wang, Le .
REGULAR & CHAOTIC DYNAMICS, 2018, 23 (05) :583-594