Spectral-clustering approach to Lagrangian vortex detection

被引:128
作者
Hadjighasem, Alireza [1 ]
Karrasch, Daniel [1 ]
Teramoto, Hiroshi [2 ]
Haller, George [1 ]
机构
[1] ETH, Inst Mech Syst, Dept Mech & Proc Engn, Leonhardstr 21, CH-8092 Zurich, Switzerland
[2] Hokkaido Univ, Res Inst Elect Sci, Mol & Life Nonlinear Sci Lab, Kita Ku, Kita 20 Nishi 10, Sapporo, Hokkaido 0010020, Japan
关键词
ALMOST-INVARIANT SETS; COHERENT STRUCTURES; TRANSPORT; VORTICES; CUT; DYNAMICS; BARRIERS;
D O I
10.1103/PhysRevE.93.063107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
One of the ubiquitous features of real-life turbulent flows is the existence and persistence of coherent vortices. Here we show that such coherent vortices can be extracted as clusters of Lagrangian trajectories. We carry out the clustering on a weighted graph, with the weights measuring pairwise distances of fluid trajectories in the extended phase space of positions and time. We then extract coherent vortices from the graph using tools from spectral graph theory. Our method locates all coherent vortices in the flow simultaneously, thereby showing high potential for automated vortex tracking. We illustrate the performance of this technique by identifying coherent Lagrangian vortices in several two-and three-dimensional flows.
引用
收藏
页数:17
相关论文
共 50 条
[11]   Vortex clustering in trapped Bose-Einstein condensates [J].
Easton, Thomas ;
Kokmotos, Marios ;
Barontini, Giovanni .
SCIENTIFIC REPORTS, 2023, 13 (01)
[12]   Objective Lagrangian Vortex Cores and their Visual Representations [J].
Guenther, Tobias ;
Theisel, Holger .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2025, 31 (01) :76-85
[13]   Caustics and clustering in the vicinity of a vortex [J].
Ravichandran, S. ;
Govindarajan, Rama .
PHYSICS OF FLUIDS, 2015, 27 (03)
[14]   Objective magnetic vortex detection [J].
Rempel, Erico L. ;
Gomes, Tiago F. P. ;
Silva, Suzana S. A. ;
Chian, Abraham C-L .
PHYSICAL REVIEW E, 2019, 99 (04)
[15]   A Lagrangian approach to the Loop Current eddy separation [J].
Andrade-Canto, F. ;
Sheinbaum, J. ;
Zavala Sanson, L. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (01) :85-96
[16]   A Lagrangian Analysis of Tip Leakage Vortex in a Low-Speed Axial Compressor Rotor [J].
Hou, Jiexuan ;
Liu, Yangwei ;
Tang, Yumeng .
SYMMETRY-BASEL, 2024, 16 (03)
[17]   Quantitative analysis of vortex added-mass and impulse generation during vortex ring formation based on elliptic Lagrangian coherent structures [J].
Xiang, Yang ;
Lin, Haiyan ;
Zhang, Bin ;
Liu, Hong .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2018, 94 :295-303
[18]   A Simple Approach for Vortex Core Visualization [J].
Li, Jiajia ;
Carrica, Pablo M. .
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (05)
[19]   Onset of vortex clustering and inverse energy cascade in dissipative quantum fluids [J].
Panico, R. ;
Comaron, P. ;
Matuszewski, M. ;
Lanotte, A. S. ;
Trypogeorgos, D. ;
Gigli, G. ;
Giorgi, M. De ;
Ardizzone, V. ;
Sanvitto, D. ;
Ballarini, D. .
NATURE PHOTONICS, 2023, 17 (05) :451-+
[20]   Lagrangian Flow Network approach to an open flow model [J].
Ser-Giacomi, Enrico ;
Rodriguez-Mendez, Victor ;
Lopez, Cristobal ;
Hernandez-Garcia, Emilio .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (09) :2057-2068