Singularly continuous spectrum of a self-similar Laplacian on the half-line

被引:11
作者
Chen, Joe P. [1 ]
Teplyaev, Alexander [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
DIMENSIONAL QUASI-CRYSTALS; JULIA SETS; RESOLVENT KERNEL; PERIODIC JACOBI; FRACTALS; OPERATORS; DYNAMICS; GAPS; RESISTANCE; DIRICHLET;
D O I
10.1063/1.4949471
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the spectrum of the self-similar Laplacian, which generates the so-called "pq random walk" on the integer half-line Z(+). Using the method of spectral decimation, we prove that the spectral type of the Laplacian is singularly continuous whenever p not equal 1/2. This serves as a toy model for generating singularly continuous spectrum, which can be generalized to more complicated settings. We hope it will provide more insight into Fibonacci-type and other weakly self-similar models. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 63 条
[1]  
Akkermans E., 2013, Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II: Fractals in Applied Mathematics vol 601, pp 1
[2]   Spontaneous emission from a fractal vacuum [J].
Akkermans, Eric ;
Gurevich, Evgeni .
EPL, 2013, 103 (03)
[3]   Thermodynamics of Photons on Fractals [J].
Akkermans, Eric ;
Dunne, Gerald V. ;
Teplyaev, Alexander .
PHYSICAL REVIEW LETTERS, 2010, 105 (23)
[4]  
ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
[5]   Reconstructing the Universe [J].
Ambjorn, J ;
Jurkiewicz, J ;
Loll, R .
PHYSICAL REVIEW D, 2005, 72 (06)
[6]  
[Anonymous], ARXIV150505855
[7]  
[Anonymous], 2013, SPRINGER MONOGRAPHS
[8]   Generic singular spectrum for ergodic Schrodinger operators [J].
Avila, A ;
Damanik, D .
DUKE MATHEMATICAL JOURNAL, 2005, 130 (02) :393-400
[9]   Vibration spectra of finitely ramified, symmetric fractals [J].
Bajorin, N. ;
Chen, T. ;
Dagan, A. ;
Emmons, C. ;
Hussein, M. ;
Khalil, M. ;
Mody, P. ;
Steinhurst, B. ;
Teplyaev, A. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2008, 16 (03) :243-258
[10]   Vibration modes of 3n-gaskets and other fractals [J].
Bajorin, N. ;
Chen, T. ;
Dagan, A. ;
Emmons, C. ;
Hussein, M. ;
Khalil, M. ;
Mody, P. ;
Steinhurst, B. ;
Teplyaev, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (01)