Effects of Biomass Type, Blend Composition, and Co-pyrolysis Temperature on Hybrid Coal Quality

被引:1
作者
Sasongko, Dwiwahju [1 ,2 ]
Wulandari, Winny [1 ,2 ]
Rubani, Inga Shaffira [1 ,2 ]
Rusydiansyah, Rifqi [1 ]
机构
[1] Inst Teknol Bandung, Fac Ind Technol, Dept Chem Engn, Bandung 40132, Indonesia
[2] Inst Teknol Bandung, Res Ctr New & Renewable Energy, Bandung 40132, Indonesia
来源
PROCEEDINGS OF THE 1ST INTERNATIONAL PROCESS METALLURGY CONFERENCE (IPMC 2016) | 2017年 / 1805卷
关键词
hybrid coal; co-pyrolysis; sub-bituminous; mahogany sawdust; rice husk;
D O I
10.1063/1.4974430
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An experimental study on co-pyrolysis of coal with biomass wastes to produce hybrid coal was conducted to investigate the effects of important process variables, namely biomass type (rice husk and sawdust), blend composition, and co-pyrolysis temperature on the quality of hybrid coal. The experiments were carried out using a vertical tubular furnace equipped with temperature controller to maintain the co-pyrolysis reactor at a given temperature. Nitrogen gas was introduced into the furnace to create an inert environment preventing the sample from burning. A known mass of solid sample consisting of manually granulated blend of coal and biomass with binder in spherical shape was contained in a basket made of stainless sieve. After a given residence time, the sample was taken from the furnace. The blend sample prior to experiment and the produced hybrid coal were then characterized for its proximate analysis, ultimate analysis and calorific value. Experimental findings suggested that by increasing co-pyrolysis temperature from 200 to 400 degrees C, the calorific value of hybrid coal will increase by 14.5-17.7% to be 5585-7060 kcal/kg. It was also showed that 30% increase in the biomass content in the fuel blend would produce a hybrid coal that emitting up to 25.9% less in CO2 when used for combustion, although its calorific value decreased down to 8% compared to the biomass blend. It is shown that hybrid coal obtained from this study is comparable in calorific value to bituminous coal, thus suitable for power plant while being more environmentally friendly.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Coal and biomass co-pyrolysis in a fluidized-bed reactor: Numerical assessment of fuel type and blending conditions
    Ismail, Tamer M.
    Banks, S. W.
    Yang, Y.
    Yang, Haiping
    Chen, Yingquan
    Bridgwater, A. V.
    Ramzy, Khaled
    Abd El-Salam, M.
    FUEL, 2020, 275 (275)
  • [42] Study On Mechanism Of Low Temperature Co-pyrolysis Of Duckweed And Flame Coal
    He, Xuanming
    Fang, Jiaqi
    Pan, Ye
    Li, Wei
    Wang, Xiaojuan
    APPLIED ENERGY TECHNOLOGY, PTS 1 AND 2, 2013, 724-725 : 300 - 305
  • [43] Co-pyrolysis of low-grade bituminous coal and algal biomass in a rotary kiln: Effect of coal/algae ratio and kiln temperature on the yield and composition of the resultant oils
    Nyoni, Bothwell
    Hlangothi, Shanganyane P.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 171
  • [44] Co-pyrolysis of biosolids with lignocellulosic biomass: Effect of feedstock on product yield and composition
    Rathnayake, Nimesha
    Patel, Savankumar
    Hakeem, Ibrahim Gbolahan
    Pazferreiro, Jorge
    Sharma, Abhishek
    Gupta, Rajender
    Rees, Catherine
    Bergmann, David
    Blackbeard, Judy
    Surapaneni, Aravind
    Shah, Kalpit
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 173 : 75 - 87
  • [45] Investigating the characterisation, kinetic mechanism, and thermodynamic behaviour of coal-biomass blends in co-pyrolysis process
    Gohar, Hamad
    Khoja, Asif Hussain
    Ansari, Abeera Ayaz
    Naqvi, Salman Raza
    Liaquat, Rabia
    Hassan, Muhammad
    Hasni, Khalil
    Qazi, Umair Yaqoob
    Ali, Imtiaz
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 163 : 645 - 658
  • [46] Co-pyrolysis of sewage sludge and lignocellulosic biomass: Synergistic effects on products characteristics and kinetics
    Liu, Yang
    Song, Yongmeng
    Fu, Jie
    Ao, Wenya
    Siyal, Asif Ali
    Zhou, Chunbao
    Liu, Chenglong
    Yu, Mengyan
    Zhang, Yingwen
    Dai, Jianjun
    Bi, Xiaotao
    ENERGY CONVERSION AND MANAGEMENT, 2022, 268
  • [47] Distribution of volatile composition from co-pyrolysis of NMH coal and dealkaline lignin
    Li, Yang
    Wu, Bowen
    Yu, Zhipeng
    Yang, He
    Jin, Lijun
    Hu, Haoquan
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2024, 52 (11): : 1594 - 1603
  • [48] Prediction of product yields using fusion model from Co-pyrolysis of biomass and coal
    Song, Jinling
    Tang, Chuyang
    Yu, Shiyao
    Yang, Xinyu
    Yang, Lei
    BIORESOURCE TECHNOLOGY, 2022, 353
  • [49] Synergistic effects and products distribution during Co-pyrolysis of biomass and plastics
    Wu, Mengge
    Wang, Zhiwei
    Chen, Gaofeng
    Zhang, Mengju
    Sun, Tanglei
    Wang, Qun
    Zhu, Huina
    Guo, Shuaihua
    Chen, Yan
    Zhu, Youjian
    Lei, Tingzhou
    Burra, Kiran G.
    Gupta, Ashwani K.
    JOURNAL OF THE ENERGY INSTITUTE, 2023, 111
  • [50] Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal
    Krerkkaiwan, Supachita
    Fushimi, Chihiro
    Tsutsumi, Atsushi
    Kuchonthara, Prapan
    FUEL PROCESSING TECHNOLOGY, 2013, 115 : 11 - 18