The dynamics of three vortex sources

被引:15
作者
Bizyaev, Ivan A. [1 ]
Borisov, Alexey V. [1 ,2 ]
Mamaev, Ivan S. [1 ,3 ]
机构
[1] Udmurt State Univ, Izhevsk 426034, Russia
[2] RAS, Inst Math & Mech, Ural Branch, Ekaterinburg 620990, Russia
[3] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
关键词
integrability; vortex sources; shape sphere; reduction; homothetic configurations; CHAOTIC ADVECTION;
D O I
10.1134/S1560354714060070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the integrability of the equations of a system of three vortex sources is shown. A reduced system describing, up to similarity, the evolution of the system's configurations is obtained. Possible phase portraits and various relative equilibria of the system are presented.
引用
收藏
页码:694 / 701
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 1976, IZV AKAD NAUK SSSR M, P21
[2]  
[Anonymous], 1995, IZV AKAD NAUK SSSR M, P183
[3]  
Bogomolov V. A., 1976, FLUID DYNAM, V11, P508
[4]   On the problem of motion of vortex sources on a plane [J].
Borisov, A. V. ;
Mamaev, I. S. .
REGULAR & CHAOTIC DYNAMICS, 2006, 11 (04) :455-466
[5]  
Borisov A.V., 2005, MATHEMATICAL METHODS
[6]   A remarkable periodic solution of the three-body problem in the case of equal masses [J].
Chenciner, A ;
Montgomery, R .
ANNALS OF MATHEMATICS, 2000, 152 (03) :881-901
[7]  
Fridman A. A., 1928, GEOPHYS ANN, V5, P9
[8]   CHAOTIC ADVECTION IN PULSED-SOURCE SINK SYSTEMS [J].
JONES, SW ;
AREF, H .
PHYSICS OF FLUIDS, 1988, 31 (03) :469-485
[9]   The Euler-Jacobi-Lie integrability theorem [J].
Kozlov, Valery V. .
REGULAR & CHAOTIC DYNAMICS, 2013, 18 (04) :329-343
[10]  
Lacomba E. A., 2009, QUAL THEORY DYN SYST, V8, P371