Comparative Study between the CRISPR/Cpf1 (Cas12a) and CRISPR/Cas9 Systems for Multiplex Gene Editing in Maize

被引:13
|
作者
Gong, Chongzhi [1 ]
Huang, Shengchan [1 ]
Song, Rentao [2 ]
Qi, Weiwei [1 ]
机构
[1] Shanghai Univ, Sch Life Sci, Shanghai Key Lab Bioenergy Crops, Shanghai 200444, Peoples R China
[2] China Agr Univ, Coll Agron & Biotechnol, Natl Maize Improvement Ctr,Joint Int Res Lab Crop, State Key Lab Plant Physiol & Biochem,Beijing Key, Beijing 100193, Peoples R China
来源
AGRICULTURE-BASEL | 2021年 / 11卷 / 05期
基金
中国国家自然科学基金;
关键词
multiplex gene editing; Cpf1; CRISPR/Cas; maize genetics; editing efficiency; GENOME; CRISPR-CAS9; CPF1; ENDONUCLEASE; NUCLEASES; CLEAVAGE; BACTERIA; COMPLEX; RICE; RNAS;
D O I
10.3390/agriculture11050429
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Although the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been proved to be an efficient multiplex gene editing system in maize, it was still unclear how CRISPR/Cpf1 (Cas12a) system would perform for multiplex gene editing in maize. To this end, this study compared the CRISPR/Cpf1 system and CRISPR/Cas9 system for multiplex gene editing in maize. The bZIP transcription factor Opaque2 (O2) was used as the target gene in both systems. We found that in the T0 and T1 generations, the CRISPR/Cpf1 system showed lower editing efficiency than the CRISPR/Cas9 system. However, in the T2 generation, the CRISPR/Cpf1 system generated more types of new mutations. While the CRISPR/Cas9 system tended to edit within the on-target range, the CRISPR/Cpf1 system preferred to edit in between the targets. We also found that in the CRISPR/Cpf1 system, the editing efficiency positively correlated with the expression level of Cpf1. In conclusion, the CRISPR/Cpf1 system offers alternative choices for target-site selection for multiplex gene editing and has acceptable editing efficiency in maize and is a valuable alternative choice for gene editing in crops.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] CRISPR/Cas9 Essential Gene Editing in Drosophila
    Osadchiy, I. S.
    Kamalyan, S. O.
    Tumashova, K. Y.
    Georgiev, P. G.
    Maksimenko, O. G.
    ACTA NATURAE, 2023, 15 (02): : 70 - 74
  • [22] CRISPR/Cas9 genome editing in wheat
    Kim, Dongjin
    Alptekin, Burcu
    Budak, Hikmet
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2018, 18 (01) : 31 - 41
  • [23] Multi-gene precision editing tool using CRISPR-Cas12a/Cpf1 system in Ogataea polymorpha
    Hou, Senqin
    Yang, Shibin
    Bai, Wenqin
    MICROBIAL CELL FACTORIES, 2025, 24 (01)
  • [24] Editing plant genomes with CRISPR/Cas9
    Belhaj, Khaoula
    Chaparro-Garcia, Angela
    Kamoun, Sophien
    Patron, Nicola J.
    Nekrasov, Vladimir
    CURRENT OPINION IN BIOTECHNOLOGY, 2015, 32 : 76 - 84
  • [25] Spatiotemporal control of CRISPR/Cas9 gene editing
    Zhuo, Chenya
    Zhang, Jiabin
    Lee, Jung-Hwan
    Jiao, Ju
    Cheng, Du
    Liu, Li
    Kim, Hae-Won
    Tao, Yu
    Li, Mingqiang
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2021, 6 (01)
  • [26] An Episomal CRISPR/Cas12a System for Mediating Efficient Gene Editing
    Duan, Nannan
    Tang, Shuqing
    Zeng, Baitao
    Hu, Zhiqing
    Hu, Qian
    Wu, Lingqian
    Zhou, Miaojin
    Liang, Desheng
    LIFE-BASEL, 2021, 11 (11):
  • [27] Two efficient CRISPR/Cas9 systems for gene editing in soybean
    Carrijo, Jessica
    Illa-Berenguer, Eudald
    LaFayette, Peter
    Torres, Nathalia
    Aragao, Francisco J. L.
    Parrott, Wayne
    Vianna, Giovanni R.
    TRANSGENIC RESEARCH, 2021, 30 (03) : 239 - 249
  • [28] The Cpf1 CRISPR-Cas protein expands genome-editing tools
    Robert D. Fagerlund
    Raymond H. J. Staals
    Peter C. Fineran
    Genome Biology, 16
  • [29] Development of a CRISPR/Cpf1 system for multiplex gene editing in Aspergillus oryzae
    Chen, Tianming
    Chen, Ziming
    Zhang, Huanxin
    Li, Yuzhen
    Yao, Lihua
    Zeng, Bin
    Zhang, Zhe
    FOLIA MICROBIOLOGICA, 2024, 69 (02) : 373 - 382
  • [30] Development of a CRISPR/Cas9 System for Methylococcus capsulatus In Vivo Gene Editing
    Tapscott, Timothy
    Guarnieri, Michael T.
    Henard, Calvin A.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2019, 85 (11)