On the mean square of the error term for the asymmetric two-dimensional divisor problems(II)

被引:4
作者
Cao, Xxiaodong [2 ]
Zhai, Wenguang [1 ]
机构
[1] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Shandong, Peoples R China
[2] Beijing Inst Petrochem Technol, Dept Math & Phys, Beijing 102617, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2010年 / 160卷 / 02期
基金
中国国家自然科学基金;
关键词
Two-dimensional divisor problems; Error term; Mean square; Asymptotic formula; HIGHER-POWER MOMENTS; EXPONENTIAL-SUMS; REMAINDER TERM; DELTA(X);
D O I
10.1007/s00605-009-0098-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Delta (a, b; x) denote the error term of the asymmetric two-dimensional divisor problem. In this paper we shall study the relation between the discrete mean value Sigma(n <= T) Delta(2)(a, b; n) and the continuous mean value integral(T)(1) Delta(2)(a, b; x)dx.
引用
收藏
页码:115 / 142
页数:28
相关论文
共 35 条
[1]  
Cao Xiaodong, 1993, ACTA MATH SINICA, V36, P644
[2]  
Corradi Keresztely., 1967, Magyar Tud. Akad. Mat. Fiz. Oszt. Kozl, V17, P89
[3]   On two sentences by Herr G.H Hardy [J].
Cramer, H .
MATHEMATISCHE ZEITSCHRIFT, 1922, 15 :201-210
[4]   EXPONENTIAL-SUMS WITH MONOMIALS [J].
FOUVRY, E ;
IWANIEC, H .
JOURNAL OF NUMBER THEORY, 1989, 33 (03) :311-333
[5]   On the average orders of the error term in the Dirichlet divisor problem [J].
Furuya, J .
JOURNAL OF NUMBER THEORY, 2005, 115 (01) :1-26
[6]  
HAFNER JL, 1988, J NUMBER THEORY, V28, P240, DOI 10.1016/0022-314X(88)90040-6
[7]   NEW OMEGA-THEOREMS FOR 2 CLASSICAL LATTICE POINT PROBLEMS [J].
HAFNER, JL .
INVENTIONES MATHEMATICAE, 1981, 63 (02) :181-186
[8]  
Hardy GH, 1916, P LOND MATH SOC, V15, P192
[9]   THE DISTRIBUTION AND MOMENTS OF THE ERROR TERM IN THE DIRICHLET DIVISOR PROBLEM [J].
HEATHBROWN, DR .
ACTA ARITHMETICA, 1992, 60 (04) :389-415
[10]   THE PJATECKII-SAPIRO PRIME NUMBER THEOREM [J].
HEATHBROWN, DR .
JOURNAL OF NUMBER THEORY, 1983, 16 (02) :242-266