ZnO/Al2O3/p-Si/Al2O3/CuO heterojunction NIR photodetector with inverted-pyramid light-trapping structure

被引:16
|
作者
Xu, Binbin [1 ]
Shen, Honglie [1 ,2 ]
Xu, Yajun [1 ]
Ge, Jiawei [1 ]
Wang, Shun [1 ]
Zhao, Qichen [1 ]
Lai, Binkang [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Jiangsu Key Lab Mat & Technol Energy Convers, Nanjing 210016, Peoples R China
[2] Changzhou Univ, Jiangsu Collaborat Innovat Ctr Photovolta Sci & E, Changzhou 213164, Peoples R China
基金
中国国家自然科学基金;
关键词
Inverted-pyramid; Cu MACE; Transition metal oxide; Heterojunction; Photodetector; Responsivity; HIGH-DETECTIVITY; C-SI; FABRICATION;
D O I
10.1016/j.jallcom.2021.159864
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Micro and nano light-trapping structures are widely applied to improve the performance of optoelectronic devices. In this work, inverted-pyramid light trapping texture on industrial-sized p-type silicon was prepared by a rapid and repeatable one-step room-temperature Cu-MACE process. On this basis, various TMOs (transition metal oxide)-Si heterojunction photodetectors (PDs) are fabricated by a low-temperature process. After careful comparison, a ZnO/Al2O3/p-Si/Al2O3/CuO heterojunction is selected as the ideal device structure, and the corresponding work mechanism is proposed. Finally, by optimizing the Al2O3 tunneling layers' thickness, a high-performance NIR PD working at 980 nm and -5 V bias stands out. The bifacial carrier selective transportation PD exhibits a considerable detectivity (5.56 x 10(11) Jones) and a high responsivity (7.10 A/W). Our work will expand the application of inverted-pyramid textured silicon and will pave a road for mass fabrication of TMOs-Si heterojunction PD. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Oxidation of volatile organic compounds on Al2O3, Pd/Al2O3, and PdO/Al2O3 catalysts
    Cordi, EM
    Falconer, JL
    JOURNAL OF CATALYSIS, 1996, 162 (01) : 104 - 117
  • [42] The Effect of Thermal Treatment Induced Performance Improvement for Charge Trapping Memory with Al2O3/(HfO2)0.9(Al2O3)0.1/Al2O3 Multilayer Structure
    Hou, Zhaozhao
    Wu, Zhenhua
    Yin, Huaxiang
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2018, 7 (12) : Q229 - Q234
  • [43] H2S ADSORPTION ON AL2O3, MODIFIED AL2O3, AND MOO3/AL2O3
    OKAMOTO, Y
    OHHARA, M
    MAEZAWA, A
    IMANAKA, T
    TERANISHI, S
    JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (11): : 2396 - 2407
  • [44] RADIAL PROFILES IN PT/AL2O3, RE/AL2O3, AND PT-RE/AL2O3
    DEMIGUEL, SR
    SCELZA, OA
    CASTRO, AA
    BARONETTI, GT
    ARDILES, DR
    PARERA, JM
    APPLIED CATALYSIS, 1984, 9 (03): : 309 - 315
  • [45] Oxidation of Volatile Organic Compounds on Al2O3, Pd/Al2O3, and PdO/Al2O3 Catalysts
    Cordi, E. M.
    Falconer, J. L.
    Journal of Catalysis, 162 (01):
  • [46] Role of Al2O3 in Al2O3–Bi2O3–P2O5 glasses
    Yasser B. Saddeek
    A. El-Denglawey
    H. Doweidar
    Applied Physics A, 2021, 127
  • [47] Origin of interfacial charges of Al2O3/Si and Al2O3/GaN heterogeneous heterostructures
    Wang, Chuanju
    AlQatari, Feras
    Khandelwal, Vishal
    Lin, Rongyu
    Li, Xiaohang
    APPLIED SURFACE SCIENCE, 2023, 608
  • [48] Conductance in Co/Al2O3/Si/Al2O3 permalloy with asymmetrically doped barrier
    Guerrero, R.
    Aliev, F. G.
    Villar, R.
    Santos, T.
    Moodera, J.
    Dugaev, V. K.
    Barnas, J.
    PHYSICAL REVIEW B, 2010, 81 (01)
  • [49] Self-trapping and multiplication of electronic excitations in Al2O3 and Al2O3:Sc crystals
    Kirm, M
    Zimmerer, G
    Feldbach, E
    Lushchik, A
    Lushchik, C
    Savikhin, F
    PHYSICAL REVIEW B, 1999, 60 (01): : 502 - 510
  • [50] Regeneration of CuO-ZnO-Al2O3/γ-Al2O3 catalyst in the direct synthesis of dimethyl ether
    Sierra, Irene
    Erena, Javier
    Aguayo, Andres T.
    Arandes, Jose M.
    Bilbao, Javier
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 94 (1-2) : 108 - 116