Histogram Anomaly Time Series A Compact Graphical Representation of Spatial Time Series Data Sets

被引:3
作者
Potter, Gerald L. [1 ]
Huffman, George J. [2 ]
Bolvin, David T. [2 ,3 ]
Bosilovich, Michael G. [4 ]
Hertz, Judy [1 ]
Carriere, Laura E. [1 ]
机构
[1] NASA, Ctr Climate Simulat, Goddard Space Flight Ctr, Greenbelt, MD USA
[2] NASA, Mesoscale Atmospher Proc Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Sci Syst & Applicat Inc, Greenbelt, MD USA
[4] NASA, Global Modeling & Assimilat Off, Goddard Space Flight Ctr, Greenbelt, MD USA
关键词
Atmosphere; Precipitation; Satellite observations; Time series; Reanalysis data;
D O I
10.1175/BAMS-D-20-0130.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We introduce a simple method for detecting changes, both transient and persistent, in reanalysis and merged satellite products due to both natural climate variability and changes to the data sources/analyses used as input. This note demonstrates this Histogram Anomaly Time Series (HATS) method using tropical ocean daily precipitation from MERRA-2 and from GPCP One-Degree Daily (1DD) precipitation estimates. Rather than averaging over space or time, we create a time series display of histograms for each increment of data (such as a day or month). Regional masks such as land-ocean can be used to isolate particular domains. While the histograms reveal subtle structures in the time series, we can amplify the signal by computing the histogram's anomalies from its climatological seasonal cycle. The qualitative analysis provided by this scheme can then form the basis for more quantitative analyses of specific features, both real and analysis induced. As an example, in the tropical oceans the analysis clearly identifies changes in the time series of both reanalysis and observations that may be related to changing inputs.
引用
收藏
页码:E2133 / E2137
页数:5
相关论文
共 10 条
[1]  
Adler R., The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation, Atmosphere, 9, (2018)
[2]  
Bosilovich M. G., Robertson F. R., Takacs L., Molod A., Mocko D., Atmospheric water balance and variability in the MERRA-2 reanalysis, J. Climate, 30, pp. 1177-1196, (2017)
[3]  
Gelaro R., The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), J. Climate, 30, pp. 5419-5454, (2017)
[4]  
Huffman G. J., Adler R. F., Morrissey M. M., Bolvin D. T., Curtis S., Joyce R., Mcgavock B., Susskind J., Global precipitation at one-degree daily resolution from multisatellite observations, J. Hydrometeor, 2, pp. 36-50, (2001)
[5]  
Potter G. L., Carriere L., Hertz J., Bosilovich M., Duffy D., Lee T., Williams D. N., Enabling reanalysis research using the Collaborative Reanalysis Technical Environment (CREATE), Bull. Amer. Meteor. Soc, 99, pp. 677-687, (2018)
[6]  
Rienecker M. M., MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, pp. 3624-3648, (2011)
[7]  
Robertson F. R., Bosilovich M. G., Chen J., Miller T. L., The effect of satellite observing system changes on MERRA water and energy fluxes, J. Climate, 24, pp. 5197-5217, (2011)
[8]  
Savitzky A., Golay M. J. E., Smoothing and differentiation of data by simplified least squares procedures, Anal. Chem, 36, pp. 1627-1639, (1964)
[9]  
Teixeira J., Waliser D., Ferraro R., Gleckler P., Lee T., Potter G., Satellite observations for CMIP5: The genesis of Obs4MIPs, Bull. Amer. Meteor. Soc, 95, pp. 1329-1334, (2014)
[10]  
Wehner M. F., The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1, J. Adv. Model. Earth Syst, 6, pp. 980-997, (2014)