Emerging Insights into Targeted Therapy-Tolerant Persister Cells in Cancer

被引:125
作者
Cabanos, Heidie Frisco [1 ,2 ]
Hata, Aaron N. [1 ,2 ]
机构
[1] Massachusetts Gen Hosp, Canc Ctr, Charlestown, MA 02129 USA
[2] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
关键词
drug-tolerant persisters; targeted therapy; acquired drug resistance; LUNG-CANCER; DRUG-RESISTANCE; STEM-CELLS; BRAF(V600E) INHIBITION; ADAPTIVE RESISTANCE; FEEDBACK ACTIVATION; ACQUIRED-RESISTANCE; KINASE INHIBITORS; MET AMPLIFICATION; RESIDUAL DISEASE;
D O I
10.3390/cancers13112666
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Acquired resistance to molecularly targeted therapies remains a major challenge in the treatment of cancer. It has been hypothesized that drug-tolerant (or "persister") cells without bona fide resistance mechanisms may survive initial drug treatment and undergo further evolution over time to acquire resistance mechanisms leading to cancer relapse. In this review, we will discuss insights into mechanisms and vulnerabilities of these cells revealed by recent in vitro, in vivo, and clinical studies. Drug resistance is perhaps the greatest challenge in improving outcomes for cancer patients undergoing treatment with targeted therapies. It is becoming clear that "persisters," a subpopulation of drug-tolerant cells found in cancer populations, play a critical role in the development of drug resistance. Persisters are able to maintain viability under therapy but are typically slow cycling or dormant. These cells do not harbor classic drug resistance driver alterations, and their partial resistance phenotype is transient and reversible upon removal of the drug. In the clinic, the persister state most closely corresponds to minimal residual disease from which relapse can occur if treatment is discontinued or if acquired drug resistance develops in response to continuous therapy. Thus, eliminating persister cells will be crucial to improve outcomes for cancer patients. Using lung cancer targeted therapies as a primary paradigm, this review will give an overview of the characteristics of drug-tolerant persister cells, mechanisms associated with drug tolerance, and potential therapeutic opportunities to target this persister cell population in tumors.
引用
收藏
页数:26
相关论文
共 130 条
[1]   Notch3-dependent β-catenin signaling mediates EGFR TKI drug persistence in EGFR mutant NSCLC [J].
Arasada, Rajeswara Rao ;
Shilo, Konstantin ;
Yamada, Tadaaki ;
Zhang, Jianying ;
Yano, Seiji ;
Ghanem, Rashelle ;
Wang, Walter ;
Takeuchi, Shinji ;
Fukuda, Koji ;
Katakami, Nobuyuki ;
Tomii, Keisuke ;
Ogushi, Fumitaka ;
Nishioka, Yasuhiko ;
Talabere, Tiffany ;
Misra, Shrilekha ;
Duan, Wenrui ;
Fadda, Paolo ;
Rahman, Mohammad A. ;
Nana-Sinkam, Patrick ;
Evans, Jason ;
Amann, Joseph ;
Tchekneva, Elena E. ;
Dikov, Mikhail M. ;
Carbone, David P. .
NATURE COMMUNICATIONS, 2018, 9
[2]   Bacterial persistence as a phenotypic switch [J].
Balaban, NQ ;
Merrin, J ;
Chait, R ;
Kowalik, L ;
Leibler, S .
SCIENCE, 2004, 305 (5690) :1622-1625
[3]   The histone demethylase KDM5A is a key factor for the resistance to temozolomide in glioblastoma [J].
Banelli, Barbara ;
Carra, Elisa ;
Barbieri, Federica ;
Wuerth, Roberto ;
Parodi, Federica ;
Pattarozzi, Alessandra ;
Carosio, Roberta ;
Forlani, Alessandra ;
Allemanni, Giorgio ;
Marubbi, Daniela ;
Florio, Tullio ;
Daga, Antonio ;
Romani, Massimo .
CELL CYCLE, 2015, 14 (21) :3418-3429
[4]   Studying clonal dynamics in response to cancer therapy using high-complexity barcoding [J].
Bhang, Hyo-eun C. ;
Ruddy, David A. ;
Radhakrishna, Viveksagar Krishnamurthy ;
Caushi, Justina X. ;
Zhao, Rui ;
Hims, Matthew M. ;
Singh, Angad P. ;
Kao, Iris ;
Rakiec, Daniel ;
Shaw, Pamela ;
Balak, Marissa ;
Raza, Alina ;
Ackley, Elizabeth ;
Keen, Nicholas ;
Schlabach, Michael R. ;
Palmer, Michael ;
Leary, Rebecca J. ;
Chiang, Derek Y. ;
Sellers, William R. ;
Michor, Franziska ;
Cooke, Vesselina G. ;
Korn, Joshua M. ;
Stegmeier, Frank .
NATURE MEDICINE, 2015, 21 (05) :440-U207
[5]   A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition [J].
Biehs, Brian ;
Dijkgraaf, Gerrit J. P. ;
Piskol, Robert ;
Alicke, Bruno ;
Boumahdi, Soufiane ;
Peale, Franklin ;
Gould, Stephen E. ;
de Sauvage, Frederic J. .
NATURE, 2018, 562 (7727) :429-+
[6]  
Bigger JW, 1944, LANCET, V2, P497
[7]   A framework for understanding and targeting residual disease in oncogene-driven solid cancers [J].
Bivona, Trever G. ;
Doebele, Robert C. .
NATURE MEDICINE, 2016, 22 (05) :472-478
[8]   FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR [J].
Bivona, Trever G. ;
Hieronymus, Haley ;
Parker, Joel ;
Chang, Kenneth ;
Taron, Miquel ;
Rosell, Rafael ;
Moonsamy, Philicia ;
Dahlman, Kimberly ;
Miller, Vincent A. ;
Costa, Carlota ;
Hannon, Gregory ;
Sawyers, Charles L. .
NATURE, 2011, 471 (7339) :523-526
[9]   NF-κB-Activating Complex Engaged in Response to EGFR Oncogene Inhibition Drives Tumor Cell Survival and Residual Disease in Lung Cancer [J].
Blakely, Collin M. ;
Pazarentzos, Evangelos ;
Olivas, Victor ;
Asthana, Saurabh ;
Yan, Jenny Jiacheng ;
Tan, Irena ;
Hrustanovic, Gorjan ;
Chan, Elton ;
Lin, Luping ;
Neel, Dana S. ;
Newton, William ;
Bobb, Kathryn L. ;
Fouts, Timothy R. ;
Meshulam, Jeffrey ;
Gubens, Matthew A. ;
Jablons, David M. ;
Johnson, Jeffrey R. ;
Bandyopadhyay, Sourav ;
Krogan, Nevan J. ;
Bivona, Trever G. .
CELL REPORTS, 2015, 11 (01) :98-110
[10]   Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors [J].
Boshuizen, Julia ;
Koopman, Louise A. ;
Krijgsman, Oscar ;
Shahrabi, Aida ;
Gresnigt-van den Heuvel, Elke ;
Ligtenberg, Maarten A. ;
Vredevoogd, David W. ;
Kemper, Kristel ;
Kuilman, Thomas ;
Song, Ji-Ying ;
Pencheva, Nora ;
Mortensen, Jens Thing ;
Foppen, Marnix Geukes ;
Rozeman, Elisa A. ;
Blank, Christian U. ;
Janmaat, Maarten L. ;
Satijn, David ;
Breij, Esther C. W. ;
Peeper, Daniel S. ;
Parren, Paul W. H. I. .
NATURE MEDICINE, 2018, 24 (02) :203-+