Validated infeasible interior-point predictor-corrector methods for linear programming

被引:0
作者
Idriss, II [1 ]
Walter, WV
机构
[1] Univ Appl Sci, FH Konstanz, Inst Appl Res, D-78405 Constance, Germany
[2] Dresden Univ Technol, Inst Comp Sci, D-01062 Dresden, Germany
关键词
linear programming; interior-point methods; predictor-corrector-algorithm; validation of solutions;
D O I
10.1023/B:NUMA.0000049465.66643.ce
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many problems arising in practical applications lead to linear programming problems. Hence, they are fundamentally tractable. Recent interior-point methods can exploit problem structure to solve such problems very efficiently. Infeasible interior-point predictor-corrector methods using floating-point arithmetic sometimes compute an approximate solution with duality gap less than a given tolerance even when the problem may not have a solution. We present an efficient verification method for solving linear programming problems which computes a guaranteed enclosure of the optimal solution and which verifies the existence of the solution within the computed interval.
引用
收藏
页码:177 / 185
页数:9
相关论文
共 14 条
[1]  
Alefeld G., 1983, INTRO INTERVAL COMPU
[2]  
Fiacco A.V., 1990, SIAM CLASSICS APPL M, V4
[3]  
Frisch R., 1955, LOGARITHMIC POTENTIA
[4]  
IDRISS II, 2001, THESIS DRESDEN U TEC
[5]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[6]  
Kearfott R.B., 1996, RIGOROUS GLOBAL SEAR
[7]  
Kojima M, 1989, PROGR MATH PROGRAMMI, P29, DOI DOI 10.1007/978-1-4613-9617-8_2
[8]   NEWTON-ALGORITHMS FOR EVALUATION OF ROOTS WITH ERROR BOUNDS [J].
KRAWCZYK, R .
COMPUTING, 1969, 4 (03) :187-&
[9]  
Megiddo N, 1989, PROGR MATH PROGRAMMI, P131
[10]   ON THE IMPLEMENTATION OF A PRIMAL-DUAL INTERIOR POINT METHOD [J].
Mehrotra, Sanjay .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (04) :575-601