THE COHOMOLOGY RINGS OF MODULI STACKS OF PRINCIPAL BUNDLES OVER CURVES

被引:0
作者
Heinloth, Jochen [1 ]
Schmitt, Alexander H. W. [2 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1098 XH Amsterdam, Netherlands
[2] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany
来源
DOCUMENTA MATHEMATICA | 2010年 / 15卷
关键词
Principal bundle; parabolic bundle; moduli space; stack; cohomology; Tamagawa number; VECTOR-BUNDLES; SPACES; REDUCTION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the cohomology of the moduli stack of G-bundles on a smooth projective curve is freely generated by the Atiyah-Bott classes in arbitrary characteristic. The main technical tool needed is the construction of coarse moduli spaces for bundles with parabolic structure in arbitrary characteristic. Using these spaces we show that the cohomology of the moduli stack is pure and satisfies base-change for curves defined over a discrete valuation ring. Thereby we get an algebraic proof of the theorem of Atiyah and Bott and conversely this can be used to give a geometric proof of the fact that the Tamagawa number of a Chevalley group is the number of connected components of the moduli stack of principal bundles.
引用
收藏
页码:423 / 488
页数:66
相关论文
共 46 条
  • [1] [Anonymous], 1993, Geometric invariant theory
  • [2] THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES
    ATIYAH, MF
    BOTT, R
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505): : 523 - 615
  • [3] Principal bundles with parabolic structure
    Balaji, V
    Biswas, I
    Nagaraj, DS
    [J]. ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 7 : 37 - 44
  • [4] Behrend K., 1990, The Lefschetz Trace Formula for the Moduli Stack of Principal Bundles
  • [5] THE LEFSCHETZ TRACE FORMULA FOR ALGEBRAIC STACKS
    BEHREND, KA
    [J]. INVENTIONES MATHEMATICAE, 1993, 112 (01) : 127 - 149
  • [6] Behrend KA, 2003, MEM AM MATH SOC, V163, pVII
  • [7] SEMI-STABILITY OF REDUCTIVE GROUP SCHEMES OVER CURVES
    BEHREND, KA
    [J]. MATHEMATISCHE ANNALEN, 1995, 301 (02) : 281 - 305
  • [8] Connected Components of Moduli Stacks of Torsors via Tamagawa Numbers
    Behrend, Kai
    Dhillon, Ajneet
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (01): : 3 - 28
  • [9] MODULI OF PARABOLIC G-BUNDLES ON CURVES
    BHOSLE, U
    RAMANATHAN, A
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (02) : 161 - 180
  • [10] ON THE ABEL-JACOBI MAP FOR DIVISORS OF HIGHER RANK ON A CURVE
    BIFET, E
    GHIONE, F
    LETIZIA, M
    [J]. MATHEMATISCHE ANNALEN, 1994, 299 (04) : 641 - 672