Stopping criteria for ensemble-based feature selection

被引:0
作者
Windeatt, Terry [1 ]
Prior, Matthew [1 ]
机构
[1] Univ Surrey, Ctr Vis Speech & Signal Proc, Surrey GU2 7XH, England
来源
MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS | 2007年 / 4472卷
关键词
RFE; ECOC; multiple classifiers; feature selection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Selecting the optimal number of features in a classifier ensemble normally requires a validation set or cross-validation technique. In this paper, feature ranking is combined with Recursive Feature Elimination (RFE), which is an effective technique for eliminating irrelevant features when the feature dimension is large. Stopping criteria are based on out-of-bootstrap (OOB) estimate and class separability, both computed on the training set thereby obviating the need for validation. Multi-class problems are solved using the Error-Correcting Output Coding (ECOC) method. Experimental investigation on natural benchmark data demonstrates the effectiveness of these stopping criteria.
引用
收藏
页码:271 / +
页数:3
相关论文
共 20 条
[1]  
[Anonymous], 1998, UCI REPOSITORY MACHI
[2]   Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets [J].
Bryll, R ;
Gutierrez-Osuna, R ;
Quek, F .
PATTERN RECOGNITION, 2003, 36 (06) :1291-1302
[3]   Estimating generalization error on two-class datasets using out-of-bag estimates [J].
Bylander, T .
MACHINE LEARNING, 2002, 48 (1-3) :287-297
[4]  
Fukunaga K., 1990, STAT PATTERN RECOGNI
[5]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422
[6]  
Guyon I, 2003, J MACH LEARN RES, P1157, DOI [10.1016/j.aca.2011.07.027, DOI 10.1016/J.ACA.2011.07.027]
[7]  
Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601
[8]   The ANNIGMA-wrapper approach to fast feature selection for neural nets [J].
Hsu, CN ;
Huang, HJ ;
Schuschel, D .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2002, 32 (02) :207-212
[9]   Wrappers for feature subset selection [J].
Kohavi, R ;
John, GH .
ARTIFICIAL INTELLIGENCE, 1997, 97 (1-2) :273-324
[10]   Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy [J].
Kuncheva, LI ;
Whitaker, CJ .
MACHINE LEARNING, 2003, 51 (02) :181-207