Structural, electronic and thermoelectric performance of narrow gap LuNiSb half Heusler compound: Potential thermoelectric material

被引:11
作者
Saini, Sapan Mohan [1 ]
机构
[1] Natl Inst Technol Raipur, Dept Phys, Raipur 492010, CG, India
关键词
Band structure; Thermoelectric properties; GGA plus U; mBJ approximation; Seeback coefficient; LuNiSb compound; DENSITY-FUNCTIONAL THEORY; RNISB COMPOUNDS R; PBE PLUS U; OPTICAL-PROPERTIES; TB; GD; PHASE; BULK; YB; TM;
D O I
10.1016/j.physb.2021.412823
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We report the band structure calculations of rare earth based half Heusler LuNiSb compound for thermoelectric performance. A narrow energy gap of 0.227 eV is opened using TB-mBJ approximation. The value of Seebeck coefficient 288 (IVK -1) at room temperature using mBJ scheme is quite large as compared to the experiment as well as well known thermoelectric material PbTe at same temperature. The observed highest value (6.1 ? 10 10 Wm -1 K -2 s -1) at 647 K is close to our calculated value 9.93 ? 10 10 Wm -1 K -2 s -1 at 650 K using GGA + U approximations. We found the Lu-4 f flat bands lie in conduction band along ?? X direction are mainly responsible for maximum peaks of Power factor. The high value 0.804 of ZT and value of other thermoelectric parameters indicate that LuNiSb would be a favourable material for room temperature thermo electric applications.
引用
收藏
页数:6
相关论文
共 48 条
[41]   Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential [J].
Tran, Fabien ;
Blaha, Peter .
PHYSICAL REVIEW LETTERS, 2009, 102 (22)
[42]   An inconvenient truth about thermoelectrics [J].
Vining, Cronin B. .
NATURE MATERIALS, 2009, 8 (02) :83-85
[43]   High thermoelectric power factors of p-type half-Heusler alloys YNiSb, LuNiSb, YPdSb, and LuPdSb [J].
Winiarski, Maciej J. ;
Bilinska, Kaja .
INTERMETALLICS, 2019, 108 :55-60
[44]   Trends in electrical transport of p-type skutterudites RFe4Sb12 (R = Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles calculations and Boltzmann transport theory [J].
Yang, Jiong ;
Qiu, P. ;
Liu, R. ;
Xi, L. ;
Zheng, S. ;
Zhang, W. ;
Chen, L. ;
Singh, D. J. ;
Yang, Jihui .
PHYSICAL REVIEW B, 2011, 84 (23)
[45]   $ per W metrics for thermoelectric power generation: beyond ZT [J].
Yee, Shannon K. ;
LeBlanc, Saniya ;
Goodson, Kenneth E. ;
Dames, Chris .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (09) :2561-2571
[46]   High-performance half-Heusler thermoelectric materials Hf1-x ZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering [J].
Yu, Cui ;
Zhu, Tie-Jun ;
Shi, Rui-Zhi ;
Zhang, Yun ;
Zhao, Xin-Bing ;
He, Jian .
ACTA MATERIALIA, 2009, 57 (09) :2757-2764
[47]   Engineering half-Heusler thermoelectric materials using Zintl chemistry [J].
Zeier, Wolfgang G. ;
Schmitt, Jennifer ;
Hautier, Geoffroy ;
Aydemir, Umut ;
Gibbs, Zachary M. ;
Felser, Claudia ;
Snyder, G. Jeffrey .
NATURE REVIEWS MATERIALS, 2016, 1 (06)
[48]   High Efficiency Half-Heusler Thermoelectric Materials for Energy Harvesting [J].
Zhu, Tiejun ;
Fu, Chenguang ;
Xie, Hanhui ;
Liu, Yintu ;
Zhao, Xinbing .
ADVANCED ENERGY MATERIALS, 2015, 5 (19)