Asymptotic analysis via Mellin transforms for small deviations in L2-norm of integrated Brownian sheets

被引:16
作者
Fill, JA [1 ]
Torcaso, F [1 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
关键词
asymptotics; integrated Brownian sheet; Mellin transform; harmonic sum; generalized Dirichlet series; small deviations; reversion;
D O I
10.1007/s00440-004-0363-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use Mellin transforms to compute a full asymptotic expansion for the tail of the Laplace transform of the squared L-2-norm of any multiply-integrated Brownian sheet. Through reversion we obtain corresponding strong small-deviation estimates.
引用
收藏
页码:259 / 288
页数:30
相关论文
共 16 条
[1]  
[Anonymous], THEORY RANDOM PROCES
[2]  
[Anonymous], COLL MATH J
[3]  
Chen X, 2003, ANN PROBAB, V31, P1052
[4]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[5]  
FLAJOLET P, 2003, UNPUB ANAL COMBINATO
[6]   Exact L2 small balls of Gaussian processes [J].
Gao, F ;
Hannig, J ;
Lee, TY ;
Torcaso, F .
JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (02) :503-520
[7]  
Gao F, 2003, ANN PROBAB, V31, P1320
[8]  
GAO F, 2003, ELECT J PROBAB, V8
[9]  
KAROL AI, 2003, STUDI STAT, V74
[10]   Chung's law for integrated Brownian motion [J].
Khoshnevisan, D ;
Shi, Z .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (10) :4253-4264