High-Performance CdSe:In Nanowire Field-Effect Transistors Based on Top-Gate Configuration with High-k Non-Oxide Dielectrics

被引:23
|
作者
He, Zhubing [1 ]
Zhang, Wenjun [1 ]
Zhang, Wenfeng [1 ]
Jie, Jiansheng [1 ,2 ]
Luo, Linbao [1 ]
Yuan, Guodong [1 ]
Wang, Jianxiong [1 ]
Wu, C. M. L. [1 ]
Bello, Igor [1 ]
Lee, Chun-Sing [1 ]
Lee, Shuit-Tong [1 ]
机构
[1] City Univ Hong Kong, Ctr Super Diamond & Adv Films COSDAF, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
[2] Hefei Univ Technol, Sch Sci, Hefei 230009, Anhui, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2010年 / 114卷 / 10期
关键词
THIN-FILM TRANSISTORS; ELECTRON-MOBILITY; QUANTUM DOTS; SILICON NANOWIRES; CARRIER MOBILITY; DEPOSITED CDSE; LOGIC GATES; NANOCRYSTALS; DEVICE;
D O I
10.1021/jp1007895
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A dual-gate field-effect transistor (FET) based oil the same single indium-doped CdSe nanowire using Si3N4 and SiO2 as top- and back-gate dielectrics, respectively, was fabricated. This dual-gate FET enabled direct comparison of the device performance of FETs in both top- and back-gate configurations. Remarkably, the field-effect mobility, peak transconductance, and I-on/I-off ratio of the Si3N4 top-gate FET were 52, 142, and 2.81 x 10(5) times larger than the respective values of the SiO2 back-gate FET. Meanwhile, the threshold voltage and the Subthreshold swing of the top-gate FET decreased to - 1.7 V and 508 rnV/decade, respectively, which are better than the best Values ever obtained in FETs based on II-VI semiconductor nanomaterials including CdSe nanowires. The roles of device configurations and gate materials in the FET characteristics and the evaluation of electronic and transport properties of nanostructures based oil that were discussed. Two kinds of basic logic Circuits, "AND" and "OR", were Constructed with the top-gate transistors, which Could also Utilize light-input to realize a phototransistor action to take advantage of its photoresponse properties.
引用
收藏
页码:4663 / 4668
页数:6
相关论文
共 50 条
  • [31] IMPACT OF HIGH-K METAL OXIDE AS GATE DIELECTRIC ON THE CERTAIN ELECTRICAL PROPERTIES OF SILICON NANOWIRE FIELD-EFFECT TRANSISTORS: A SIMULATION STUDY
    Das, Sanat Kr.
    Chettri, Bibek
    Karki, Prasanna
    Kunwar, Bhakta
    Chettri, Pronita
    Sharma, Bikash
    FACTA UNIVERSITATIS-SERIES ELECTRONICS AND ENERGETICS, 2023, 36 (04) : 553 - 565
  • [32] Memory characteristics of top-gate ZnO nanowire field-effect transistors with floating gate nodes of Au nanoparticles
    Yeom, Donghyuk
    Kang, Jeongmin
    Yoon, Changjoon
    Park, Byoungjun
    Keem, Kihyun
    Jeong, Dong-Young
    Kim, Mihyun
    Koh, Eui Kwan
    Kim, Sangsig
    MICROPROCESSES AND NANOTECHNOLOGY 2007, DIGEST OF PAPERS, 2007, : 124 - +
  • [33] 2D fin field-effect transistors integrated with epitaxial high-k gate oxide
    Tan, Congwei
    Yu, Mengshi
    Tang, Junchuan
    Gao, Xiaoyin
    Yin, Yuling
    Zhang, Yichi
    Wang, Jingyue
    Gao, Xinyu
    Zhang, Congcong
    Zhou, Xuehan
    Zheng, Liming
    Liu, Hongtao
    Jiang, Kaili
    Ding, Feng
    Peng, Hailin
    NATURE, 2023, 616 (7955) : 66 - 72
  • [34] Fin Field Effect Transistors Performance in Analog and RF for High-k Dielectrics
    Nirmal, D.
    Kumar, P. Vijaya
    DEFENCE SCIENCE JOURNAL, 2011, 61 (03) : 235 - 240
  • [35] 2D fin field-effect transistors integrated with epitaxial high-k gate oxide
    Congwei Tan
    Mengshi Yu
    Junchuan Tang
    Xiaoyin Gao
    Yuling Yin
    Yichi Zhang
    Jingyue Wang
    Xinyu Gao
    Congcong Zhang
    Xuehan Zhou
    Liming Zheng
    Hongtao Liu
    Kaili Jiang
    Feng Ding
    Hailin Peng
    Nature, 2023, 616 : 66 - 72
  • [36] Ge/Si nanowire heterostructures as high-performance field-effect transistors
    Xiang, Jie
    Lu, Wei
    Hu, Yongjie
    Wu, Yue
    Yan, Hao
    Lieber, Charles M.
    NATURE, 2006, 441 (7092) : 489 - 493
  • [37] Solution processed non-volatile top-gate polymer field-effect transistors
    Leong, Wei Lin
    Mathews, Nripan
    Tan, Bertha
    Vaidyanathan, Subramanian
    Doetz, Florian
    Mhaisalkar, Subodh
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (25) : 8971 - 8974
  • [38] Ge/Si nanowire heterostructures as high-performance field-effect transistors
    Jie Xiang
    Wei Lu
    Yongjie Hu
    Yue Wu
    Hao Yan
    Charles M. Lieber
    Nature, 2006, 441 : 489 - 493
  • [39] Study of High-Energy Proton Irradiation Effects in Top-Gate Graphene Field-Effect Transistors
    Lu, Xiaojie
    Guo, Hongxia
    Lei, Zhifeng
    Peng, Chao
    Zhang, Zhangang
    Zhang, Hong
    Ma, Teng
    Feng, Yahui
    Ma, Wuying
    Zhong, Xiangli
    Li, Jifang
    Li, Yangfan
    Bai, Ruxue
    ELECTRONICS, 2023, 12 (23)
  • [40] A Transparent Cyanated Polyimide Gate Dielectrics for High Performance Organic Field-Effect Transistors
    Baek, Yonghwa
    Li, Xinlin
    Chaudhary, Prerna
    Park, Chan Eon
    Han, Sung Soo
    An, Tae Kyu
    Kim, Se Hyun
    POLYMER-KOREA, 2019, 43 (01) : 38 - 45