MULTIPLE SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION WITH HARDY-SOBOLEV EXPONENTS

被引:0
作者
Zhang, Chunyan [1 ]
Zhang, Jihui [2 ]
机构
[1] Nanjing Normal Univ, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
关键词
fractional p-Laplacian; multiplicity of solutions; Hardy-Sobolev exponent; variational methods; NONLOCAL EQUATIONS; EXISTENCE;
D O I
10.1216/rmj.2021.51.363
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the fractional p-Laplacian problem with Hardy-Sobolev exponents. We prove: there is a lambda(0) > 0 such that for any lambda is an element of (0; lambda(0)), the above problem possesses infinitely many solutions. We achieve our goal by making use of variational methods, more specifically, the Nehari manifold and LusternikSchnirelmann theory.
引用
收藏
页码:363 / 374
页数:12
相关论文
共 25 条
  • [1] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [2] MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM
    AZORERO, JG
    ALONSO, IP
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) : 877 - 895
  • [3] Fractional equations with bounded primitive
    Bisci, Giovanni Molica
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 27 : 53 - 58
  • [4] STABILITY OF VARIATIONAL EIGENVALUES FOR THE FRACTIONAL p-LAPLACIAN
    Brasco, Lorenzo
    Parini, Enea
    Squassina, Marco
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) : 1813 - 1845
  • [5] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [6] EXISTENCE OF WEAK SOLUTIONS FOR NON-LOCAL FRACTIONAL PROBLEMS VIA MORSE THEORY
    Ferrara, Massimilianao
    Bisci, Giovanni Molica
    Zhang, Binlin
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (08): : 2483 - 2499
  • [7] Kirchhoff-Hardy Fractional Problems with Lack of Compactness
    Fiscella, Alessio
    Pucci, Patrizia
    [J]. ADVANCED NONLINEAR STUDIES, 2017, 17 (03) : 429 - 456
  • [8] Fiscella A, 2016, ADV DIFFERENTIAL EQU, V21, P571
  • [9] Franzina G, 2014, RIV MAT UNIV PARMA, V5, P373
  • [10] Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents
    Ghoussoub, N
    Yuan, C
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) : 5703 - 5743