MULTIPLE SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION WITH HARDY-SOBOLEV EXPONENTS

被引:0
作者
Zhang, Chunyan [1 ]
Zhang, Jihui [2 ]
机构
[1] Nanjing Normal Univ, Nanjing 210023, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
关键词
fractional p-Laplacian; multiplicity of solutions; Hardy-Sobolev exponent; variational methods; NONLOCAL EQUATIONS; EXISTENCE;
D O I
10.1216/rmj.2021.51.363
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the fractional p-Laplacian problem with Hardy-Sobolev exponents. We prove: there is a lambda(0) > 0 such that for any lambda is an element of (0; lambda(0)), the above problem possesses infinitely many solutions. We achieve our goal by making use of variational methods, more specifically, the Nehari manifold and LusternikSchnirelmann theory.
引用
收藏
页码:363 / 374
页数:12
相关论文
共 25 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[3]   Fractional equations with bounded primitive [J].
Bisci, Giovanni Molica .
APPLIED MATHEMATICS LETTERS, 2014, 27 :53-58
[4]   STABILITY OF VARIATIONAL EIGENVALUES FOR THE FRACTIONAL p-LAPLACIAN [J].
Brasco, Lorenzo ;
Parini, Enea ;
Squassina, Marco .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (04) :1813-1845
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]   EXISTENCE OF WEAK SOLUTIONS FOR NON-LOCAL FRACTIONAL PROBLEMS VIA MORSE THEORY [J].
Ferrara, Massimilianao ;
Bisci, Giovanni Molica ;
Zhang, Binlin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (08) :2483-2499
[7]   Kirchhoff-Hardy Fractional Problems with Lack of Compactness [J].
Fiscella, Alessio ;
Pucci, Patrizia .
ADVANCED NONLINEAR STUDIES, 2017, 17 (03) :429-456
[8]  
Fiscella A, 2016, ADV DIFFERENTIAL EQU, V21, P571
[9]  
Franzina G, 2014, RIV MAT UNIV PARMA, V5, P373
[10]   Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J].
Ghoussoub, N ;
Yuan, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5703-5743