Rotation number quantization effect

被引:21
作者
Buchstaber, V. M. [1 ,2 ]
Karpov, O. V. [2 ]
Tertychniy, S. I. [2 ]
机构
[1] RAS, VA Steklov Math Inst, Moscow 117901, Russia
[2] Natl Res Inst Physicotech & Radio Engn Measuremen, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
dynamical system on a torus; rotation number; quantization; Josephson effect; JOSEPHSON; STABILITY; DYNAMICS;
D O I
10.1007/s11232-010-0016-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a class of dynamical systems on a torus that includes dynamical systems modeling the dynamics of the Josephson transition. For systems in this class, we introduce certain characteristics including a sequence of functions depending on the system parameters. We prove that if this sequence converges at a given point in the parameter space, then its limit is equal to the classical rotation number, and we then call this point a quantization point for the rotation number. We prove that the rotation number of such a system takes only integer values at a quantization point. Quantization areas are thus defined in the parameter space, and the problem of effectively describing them becomes an important part of characterizing the systems under study. We present graphs of the rotation number at quantization points and under conditions when it is not quantized (an example of a half-integer rotation number) and diagrams for quantization areas.
引用
收藏
页码:211 / 221
页数:11
相关论文
共 14 条
[1]  
[Anonymous], DIFFERENTIAL EQUATIO
[2]  
[Anonymous], 1983, GEOMETRICAL METHODS
[3]  
Barone A., 1982, PHYS APPL JOSEPHSON
[4]   Features of the dynamics of a Josephson junction biased by a sinusoidal microwave current [J].
Buchstaber, V. M. ;
Karpov, O. V. ;
Tertychnyi, S. I. .
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2006, 51 (06) :713-718
[5]   On properties of the differential equation describing the dynamics of an overdamped Josephson junction [J].
Buchstaber, VM ;
Karpov, OV ;
Tertychnyi, SI .
RUSSIAN MATHEMATICAL SURVEYS, 2004, 59 (02) :377-378
[6]   The dynamics of transients in an overdamped Josephson junction biased by trains of short current pulses with controllable parameters [J].
Buchstaber, VM ;
Karpov, OV ;
Tertychnyi, SI .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2003, 97 (03) :624-631
[7]  
CESARI L, 1959, ERGEB MATH GRENZGEB, V16
[8]   THE DUCK AND THE DEVIL: CANARDS ON THE STAIRCASE [J].
Guckenheimer, J. ;
Ilyashenko, Yu. .
MOSCOW MATHEMATICAL JOURNAL, 2001, 1 (01) :27-47
[9]  
Hartman P., 2002, ORDINARY DIFFERENTIA, V2nd edn
[10]   Modeling of rf-biased overdamped Josephson junctions [J].
Karpov, O. V. ;
Buchstaber, V. M. ;
Tertychniy, S. I. ;
Niemeyer, J. ;
Kieler, O. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (09)