3D Conceptual Design Using Deep Learning

被引:2
|
作者
Yang, Zhangsihao [1 ]
Jiang, Haoliang [1 ]
Zou, Lan [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
ADVANCES IN COMPUTER VISION, CVC, VOL 1 | 2020年 / 943卷
关键词
Design support; Data analysis; 3D representation; Generative model; Computer vision;
D O I
10.1007/978-3-030-17795-9_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article proposes a data-driven methodology to achieve fast design support to generate or develop novel designs covering multiple object categories. This methodology implements two state-of-the-art Variational Autoencoder, dealing with 3D model data, with a self-defined loss function. The loss function, containing the outputs of individual layers in the autoencoder, obtains combinations of different latent features from different 3D model categories. This article provides detail explanation for utilizing the Princeton Model-Net40 database, a comprehensive clean collection of 3D CAD models for objects. After converting the original 3D mesh file to voxel and point cloud data type, the model will feed an autoencoder with data in the same dimension. The novelty is to leverage the power of deep learning methods as an efficient latent feature extractor to explore unknown designing areas. The output is expected to show a clear and smooth interpretation of the model from different categories to generate new shapes. This article will explore (1) the theoretical ideas, (2) the progress to implement Variational Autoencoder to attain implicit features from input shapes, (3) the results of output shapes during training in selected domains of both 3D voxel data and 3D point cloud data, and (4) the conclusion and future work to achieve the more outstanding goal.
引用
收藏
页码:16 / 26
页数:11
相关论文
共 50 条
  • [1] 3D Building Facade Reconstruction Using Deep Learning
    Bacharidis, Konstantinos
    Sarri, Froso
    Ragia, Lemonia
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (05)
  • [2] Excavator 3D pose estimation using deep learning and hybrid datasets
    Assadzadeh, Amin
    Arashpour, Mehrdad
    Li, Heng
    Hosseini, Reza
    Elghaish, Faris
    Baduge, Shanaka
    ADVANCED ENGINEERING INFORMATICS, 2023, 55
  • [3] Underwater Pipe and Valve 3D Recognition Using Deep Learning Segmentation
    Martin-Abadal, Miguel
    Pinar-Molina, Manuel
    Martorell-Torres, Antoni
    Oliver-Codina, Gabriel
    Gonzalez-Cid, Yolanda
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (01) : 1 - 14
  • [4] Classification of occluded 2D objects using deep learning of 3D shape surfaces
    Tzitzilonis, Vasileios
    Kappatos, Vassilios
    Dermatas, Evangelos
    Apostolopoulos, George
    10TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2018), 2018,
  • [5] Deep learning-based 3D reconstruction: a survey
    Samavati, Taha
    Soryani, Mohsen
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 9175 - 9219
  • [6] Deep learning-based 3D reconstruction: a survey
    Taha Samavati
    Mohsen Soryani
    Artificial Intelligence Review, 2023, 56 : 9175 - 9219
  • [7] Scalable semantic 3D mapping of coral reefs with deep learning
    Sauder, Jonathan
    Banc-Prandi, Guilhem
    Meibom, Anders
    Tuia, Devis
    METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (05): : 916 - 934
  • [8] A Review of Deep Learning Techniques for 3D Reconstruction of 2D Images
    Yuniarti, Anny
    Suciati, Nanik
    PROCEEDINGS OF 2019 12TH INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND SYSTEM (ICTS), 2019, : 327 - 331
  • [9] Deep learning based 3D segmentation in computer vision: A survey
    He, Yong
    Yu, Hongshan
    Liu, Xiaoyan
    Yang, Zhengeng
    Sun, Wei
    Anwar, Saeed
    Mian, Ajmal
    INFORMATION FUSION, 2025, 115
  • [10] A review of deep learning techniques for 2D and 3D human pose estimation
    Ben Gamra, Miniar
    Akhloufi, Moulay A.
    IMAGE AND VISION COMPUTING, 2021, 114