Single-Phase Z-Source/Quasi-Z-Source Inverters and Converters An Overview of Double-Line-Frequency Power-Decoupling Methods and Perspectives

被引:35
作者
Liu, Yushan [1 ,2 ]
Ge, Baoming [3 ,4 ,5 ,6 ,7 ]
Abu-Rub, Haitham [1 ]
Blaabjerg, Frede
机构
[1] Texas A&M Univ Qatar, Doha, Qatar
[2] Beihang Univ, Beijing, Peoples R China
[3] Tsinghua Univ, Beijing, Peoples R China
[4] Beijing Jiaotong Univ, Beijing, Peoples R China
[5] Univ Coimbra, Coimbra, Portugal
[6] Michigan State Univ, E Lansing, MI 48824 USA
[7] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX USA
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
CONTROL STRATEGY; DESIGN; DRIVE; SYSTEM; MODULE; COMPENSATION; MODULATION;
D O I
10.1109/MIE.2018.2825479
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we investigate power-decoupling methods used in single-phase Z-source/quasi-Z-source inverters (ZSIs/qZSIs) to handle inherent double-linefrequency (2ω) power by comparing their implementation approaches and performances. Passive methods can be used to suppress 2ω ripples within the range of engineering tolerance by designing impedance networks, modifying modulation methods, or using closed-loop damping controls. Active power-decoupling methods eliminate 2ω ripples from the dc side by employing an active filter that buffers the 2ω ripple power. After we address the pros and cons of all methods, we apply a typical active method to a single-phase qZSI and a single-phase qZS matrix converter to demonstrate their high performance, promising perspectives, and potential applications. © 2007-2011 IEEE.
引用
收藏
页码:6 / 23
页数:18
相关论文
共 71 条
[11]   Development of an 85-kW Bidirectional Quasi-Z-Source Inverter With DC-Link Feed-Forward Compensation for Electric Vehicle Applications [J].
Guo, Feng ;
Fu, Lixing ;
Lin, Chien-Hui ;
Li, Cong ;
Choi, Woongchul ;
Wang, Jin .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (12) :5477-5488
[12]   Single-Phase T-Type Inverter Performance Benchmark Using Si IGBTs, SiC MOSFETs, and GaN HEMTs [J].
Gurpinar, Emre ;
Castellazzi, Alberto .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (10) :7148-7160
[13]  
He DY, 2016, APPL POWER ELECT CO, P2599, DOI 10.1109/APEC.2016.7468231
[14]   A Space Vector Modulator for the High-Switching Frequency Control of Three-Level SiC Inverters [J].
Holtz, Joachim ;
Hoeltgen, Markus ;
Krah, Jens Onno .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (05) :2618-2626
[15]   A Review of Power Decoupling Techniques for Microinverters With Three Different Decoupling Capacitor Locations in PV Systems [J].
Hu, Haibing ;
Harb, Souhib ;
Kutkut, Nasser ;
Batarseh, Issa ;
Shen, Z. John .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (06) :2711-2726
[16]   Z-source inverter for residential photovoltaic systems [J].
Huang, Yi ;
Shen, Miaosen ;
Peng, Fang Z. ;
Wang, Jin .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2006, 21 (06) :1776-1782
[17]  
Jin Wang, 2007, International Conference on Electrical Machines and Systems 2007, P834
[18]   Grid-Connected Photovoltaic Systems: An Overview of Recent Research and Emerging PV Converter Technology [J].
Kouro, Samir ;
Leon, Jose I. ;
Vinnikov, Dmitri ;
Franquelo, Leopoldo G. .
IEEE INDUSTRIAL ELECTRONICS MAGAZINE, 2015, 9 (01) :47-61
[19]   Novel Loss and Harmonic Minimized Vector Modulation for a Current-Fed Quasi-Z-Source Inverter in HEV Motor Drive Application [J].
Lei, Qin ;
Cao, Dong ;
Peng, Fang Zheng .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (03) :1344-1357
[20]  
Li MX, 2015, 2015 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), P331, DOI 10.1109/CENCON.2015.7409564