Cross-covariance functions for multivariate random fields based on latent dimensions

被引:113
作者
Apanasovich, Tatiyana V. [1 ]
Genton, Marc G. [2 ]
机构
[1] Thomas Jefferson Univ, Div Biostat, Philadelphia, PA 19107 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Asymmetry; Linear model of coregionalization; Nonseparability; Positive definiteness; Space and time; Stationarity; MODEL;
D O I
10.1093/biomet/asp078
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The problem of constructing valid parametric cross-covariance functions is challenging. We propose a simple methodology, based on latent dimensions and existing covariance models for univariate random fields, to develop flexible, interpretable and computationally feasible classes of cross-covariance functions in closed form. We focus on spatio-temporal cross-covariance functions that can be nonseparable, asymmetric and can have different covariance structures, for instance different smoothness parameters, in each component. We discuss estimation of these models and perform a small simulation study to demonstrate our approach. We illustrate our methodology on a trivariate spatio-temporal pollution dataset from California and demonstrate that our cross-covariance performs better than other competing models.
引用
收藏
页码:15 / 30
页数:16
相关论文
共 24 条
[1]  
[Anonymous], 2006, Multivariate Geostatistics: An Introduction With Applications
[2]  
[Anonymous], 1987, SPRINGER SERIES STAT
[3]   Aberrant crypt foci and semiparametric modeling of correlated binary data [J].
Apanasovich, Tatiyana V. ;
Ruppert, David ;
Lupton, Joanne R. ;
Popovic, Natasa ;
Turner, Nancy D. ;
Chapkin, Robert S. ;
Carroll, Raymond J. .
BIOMETRICS, 2008, 64 (02) :490-500
[4]   On geodetic distance computations in spatial modeling [J].
Banerjee, S .
BIOMETRICS, 2005, 61 (02) :617-625
[5]   A SIMPLE SPATIAL-TEMPORAL MODEL OF RAINFALL [J].
COX, DR ;
ISHAM, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 415 (1849) :317-328
[6]  
Cox T.F., 2000, Multidimensional Scaling, V2nd ed.
[7]   Classes of nonseparable, spatio-temporal stationary covariance functions [J].
Cressie, N ;
Huang, HC .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) :1330-1340
[8]  
Feller W., 1966, An introduction to probability theory and its applications, V2
[9]  
Gaspari G, 1999, Q J ROY METEOR SOC, V125, P723, DOI 10.1002/qj.49712555417
[10]   Nonstationary multivariate process modeling through spatially varying coregionalization [J].
Gelfand, AE ;
Schmidt, AM ;
Banerjee, S ;
Sirmans, CF .
TEST, 2004, 13 (02) :263-294