Homoclinic connections in strongly self-excited nonlinear oscillators: The Melnikov function and the elliptic Lindstedt-Poincare method

被引:48
作者
Belhaq, M
Fiedler, B
Lakrad, F
机构
[1] Fac Sci Ain Chock, Lab Mech, Grp Nonlinear Oscillat & Chaos, Casablanca, Morocco
[2] Free Univ Berlin, Inst Math, D-14195 Berlin, Germany
关键词
homoclinic bifurcations criteria; elliptic Lindstedt-Poincare method; Melnikov function;
D O I
10.1023/A:1008316010341
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A criterion to predict bifurcation of homoclinic orbits in strongly nonlinear self-excited one-degree-of-freedom oscillator (x)double over dot + c(1)x+c(2) f(x) = epsilon g(mu,x,(x)over dot), is presented. The Lindstedt-Poincare perturbation method is combined formally with the Jacobian elliptic functions to determine an approximation of the limit cycles near homoclinicity. We then apply a criterion for predicting homoclinic orbits, based on the collision of the bifurcating limit cycle with the saddle equilibrium. In particular we show that this criterion leads to the same results, formally and to leading order, as the standard Melnikov technique. Explicit applications of this criterion to quadratic or cubic nonlinearities f(x) are included.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 33 条
[1]  
[Anonymous], 2004, ELEMENTS APPL BIFURC
[2]   AN EXTENSION TO METHOD OF KRYLOFF AND BOGOLIUBOFF [J].
BARKHAM, PGD ;
SOUDACK, AC .
INTERNATIONAL JOURNAL OF CONTROL, 1969, 10 (04) :377-&
[3]   APPROXIMATE SOLUTIONS OF NON-LINEAR NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS [J].
BARKHAM, PGD ;
SOUDACK, AC .
INTERNATIONAL JOURNAL OF CONTROL, 1970, 11 (01) :101-&
[4]  
Bejarano J. D., 1982, Anales de Fisica, Serie A (Fenomenos e Interacciones), V78, P159
[5]   Predicting homoclinic bifurcations in planar autonomous systems [J].
Belhaq, M ;
Lakrad, F ;
Fahsi, A .
NONLINEAR DYNAMICS, 1999, 18 (04) :303-310
[6]   Homoclinic bifurcations in self-excited oscillators [J].
Belhaq, M ;
Fahsi, A .
MECHANICS RESEARCH COMMUNICATIONS, 1996, 23 (04) :381-386
[7]  
BOGOLIOUBOV N, 1961, ASYMPTOTIC METHODS T
[8]  
Byrd P. F, 1971, Handbook of Elliptic Integrals for Engineers and Scientists
[9]   An elliptic Lindstedt-Poincare method for certain strongly non-linear oscillators [J].
Chen, SH ;
Cheung, YK .
NONLINEAR DYNAMICS, 1997, 12 (03) :199-213
[10]  
Chow N, 1982, METHODS BIFURCATION