A generalization of intersection formulae of integral geometry

被引:17
作者
Glasauer, S [1 ]
机构
[1] UNIV FREIBURG,INST MATH,D-79104 FREIBURG,GERMANY
关键词
convex bodies; generalized curvature measures; boundary structure; Crofton formula; principal kinematic formula;
D O I
10.1023/A:1004976306108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish extensions of the Crofton formula and, under some restrictions, of the principal kinematic formula of integral geometry from curvature measures to generalized curvature measures of convex bodies. We also treat versions for finite unions of convex bodies. As a consequence, we get a new intuitive interpretation of the area measures of Aleksandrov and Fenchel-Jessen.
引用
收藏
页码:101 / 121
页数:21
相关论文
共 9 条
[1]  
Glasauer S., 1995, THESIS U FREIBURG BR
[2]  
Glasauer S., 1996, DISS SUMM MATH, V1, P219
[3]   A SHORT PROOF OF A PRINCIPAL KINEMATIC FORMULA AND EXTENSIONS [J].
ROTHER, W ;
ZAHLE, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 321 (02) :547-558
[4]  
SCHNEIDER R, 1993, CONVEX BODIES BRUNNM
[5]  
Schneider R., 1993, HDB CONVEX GEOMETRY, P1349
[6]  
Schneider R., 1992, INTEGRALGEOMETRIE
[7]  
SCHNEIDER R, 1980, GEOM DEDICATA, V9, P111
[8]  
Zahle M., 1990, ANN GLOB ANAL GEOM, V8, P249
[9]  
ZALGALLER VA, 1975, J SOVIET MATH, V3, P437