Fault-Tolerant Hamiltonian Connectivity and Fault-Tolerant Hamiltonicity of the Fully Connected Cubic Networks

被引:0
作者
Ho, Tung-Yang [1 ]
Lin, Cheng-Kuan [2 ]
机构
[1] Ta Hwa Inst Technol, Dept Informat Management, Hsinchu 307, Taiwan
[2] Natl Chiao Tung Univ, Dept Comp Sci, Hsinchu 300, Taiwan
关键词
hamiltonian; hamiltonian connected; fault-tolerant hamiltonian; fault-tolerant hamiltonian connected; fully connected cubic network; INTERCONNECTION NETWORKS; OTIS-NETWORKS; GRAPHS; CUBES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many papers on the fully connected cubic networks have been published for the past several years due to its favorite properties. In this paper, we consider the fault-tolerant hamiltonian connectivity and fault-tolerant hamiltonicity of the fully connected cubic network. We use FCCNn to denote the fully connected cubic network of level n. Let G = (V, E) be a graph. The fault-tolerant hamiltonian connectivity H-f(k) (G) is defined to be the maximum integer l such that G - F remains hamiltonian connected for every F subset of V(G) boolean OR E(G) with vertical bar F vertical bar <= l. The fault-tolerant hamiltonicitly H-f(G) is defined to be the maximum integer l such that G - F remains hamiltonian for every F subset of V(G) boolean OR E(G) with vertical bar F vertical bar <= l. We prove that H-f(k) (FCCNn) = 0 and H-f(FCCNn) = 1 if n >= 2.
引用
收藏
页码:1855 / 1862
页数:8
相关论文
共 50 条
  • [31] Developing fault-tolerant distributed loops
    Farrag, A. A.
    INFORMATION PROCESSING LETTERS, 2010, 111 (02) : 97 - 101
  • [32] Fault-tolerant panconnectivity of augmented cubes
    Hailiang Wang
    Jianwei Wang
    Jun-Ming Xu
    Frontiers of Mathematics in China, 2009, 4 : 697 - 719
  • [33] Fault-tolerant meshes with small degree
    Bruck, J
    Cypher, R
    Ho, CT
    SIAM JOURNAL ON COMPUTING, 1997, 26 (06) : 1764 - 1784
  • [34] Fault-tolerant hypercubes with small degree
    Yamada, T
    Ueno, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (05): : 807 - 813
  • [35] Fault-tolerant meshes with small degree
    Zhang, L
    IEEE TRANSACTIONS ON COMPUTERS, 2002, 51 (05) : 553 - 560
  • [36] Fault-Tolerant Spanners for General Graphs
    Chechik, S.
    Langberg, M.
    Peleg, D.
    Roditty, L.
    STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 435 - 444
  • [37] Families of optimal fault-tolerant multiple-bus networks
    Tu, HY
    Hawkes, LW
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2001, 12 (01) : 60 - 73
  • [38] The edge fault-tolerant spanning laceability of the enhanced hypercube networks
    Hongwei Qiao
    Jixiang Meng
    Eminjan Sabir
    The Journal of Supercomputing, 2023, 79 : 6070 - 6086
  • [39] Fault-Tolerant Partition Resolvability in Mesh Related Networks and Applications
    Azhar, Kamran
    Zafar, Sohail
    Kashif, Agha
    Aljaedi, Amer
    Albalawi, Umar
    IEEE ACCESS, 2022, 10 : 71521 - 71529
  • [40] A unified fault-tolerant routing scheme for a class of cluster networks
    Day, Khaled
    Arafeh, Bassel
    Touzene, Abderezak
    JOURNAL OF SYSTEMS ARCHITECTURE, 2008, 54 (08) : 757 - 768