Fault-Tolerant Hamiltonian Connectivity and Fault-Tolerant Hamiltonicity of the Fully Connected Cubic Networks

被引:0
作者
Ho, Tung-Yang [1 ]
Lin, Cheng-Kuan [2 ]
机构
[1] Ta Hwa Inst Technol, Dept Informat Management, Hsinchu 307, Taiwan
[2] Natl Chiao Tung Univ, Dept Comp Sci, Hsinchu 300, Taiwan
关键词
hamiltonian; hamiltonian connected; fault-tolerant hamiltonian; fault-tolerant hamiltonian connected; fully connected cubic network; INTERCONNECTION NETWORKS; OTIS-NETWORKS; GRAPHS; CUBES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many papers on the fully connected cubic networks have been published for the past several years due to its favorite properties. In this paper, we consider the fault-tolerant hamiltonian connectivity and fault-tolerant hamiltonicity of the fully connected cubic network. We use FCCNn to denote the fully connected cubic network of level n. Let G = (V, E) be a graph. The fault-tolerant hamiltonian connectivity H-f(k) (G) is defined to be the maximum integer l such that G - F remains hamiltonian connected for every F subset of V(G) boolean OR E(G) with vertical bar F vertical bar <= l. The fault-tolerant hamiltonicitly H-f(G) is defined to be the maximum integer l such that G - F remains hamiltonian for every F subset of V(G) boolean OR E(G) with vertical bar F vertical bar <= l. We prove that H-f(k) (FCCNn) = 0 and H-f(FCCNn) = 1 if n >= 2.
引用
收藏
页码:1855 / 1862
页数:8
相关论文
共 50 条
  • [1] Fault-tolerant hamiltonicity and fault-tolerant hamiltonian connectivity of the folded Petersen cube networks
    Lin, Cheng-Kuan
    Ho, Tung-Yang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (01) : 57 - 66
  • [2] Fault-Tolerant Hamiltonicity of the WK-Recursive Networks
    Ho, Tung-Yang
    Lin, Cheng-Kuan
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    2009 10TH INTERNATIONAL SYMPOSIUM ON PERVASIVE SYSTEMS, ALGORITHMS, AND NETWORKS (ISPAN 2009), 2009, : 592 - +
  • [3] Panconnectivity, fault-tolerant Hamiltonicity and Hamiltonian-connectivity in alternating group graphs
    Chang, JM
    Yang, JS
    NETWORKS, 2004, 44 (04) : 302 - 310
  • [4] Fault-tolerant hamiltonian connectivity of the WK-recursive networks
    Ho, Tung-Yang
    Lin, Cheng-Kuan
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    INFORMATION SCIENCES, 2014, 271 : 236 - 245
  • [5] Fault-tolerant hamiltonicity of twisted cubes
    Huang, WT
    Tan, JJM
    Hung, CN
    Hsu, LH
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2002, 62 (04) : 591 - 604
  • [6] FAULT-TOLERANT HAMILTONIAN LACEABILITY AND FAULT-TOLERANT CONDITIONAL HAMILTONIAN FOR BIPARTITE HYPERCUBE-LIKE NETWORKS
    Lin, Cheng-Kuan
    Ho, Tung-Yang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    JOURNAL OF INTERCONNECTION NETWORKS, 2009, 10 (03) : 243 - 251
  • [7] On the fault-tolerant Hamiltonicity of faulty crossed cubes
    Huang, WT
    Chuang, YC
    Tan, JJM
    Hsu, LH
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (06) : 1359 - 1370
  • [8] Fault-tolerant hamiltonian connectedness of cycle composition networks
    Kueng, Tz-Liang
    Lin, Cheng-Kuan
    Liang, Tyne
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (01) : 245 - 256
  • [9] Fault-Tolerant Hamiltonian Connectivity of Twisted Hypercube-Like Networks THLNs
    Zhang, Huifeng
    Xu, Xirong
    Guo, Jing
    Yang, Yuansheng
    IEEE ACCESS, 2018, 6 : 74081 - 74090
  • [10] Fault-Tolerant Hamiltonicity of Augmented Cubes under the Conditional Fault Model
    Hsieh, Sun-Yuan
    Cian, Yi-Ru
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PROCEEDINGS, 2009, 5574 : 673 - 683