机构:
Univ Teknol Malaysia Johar Bahru, Elect Dept, Skudai, Johor, MalaysiaUniv Politehn Bucuresti, Comp Sci Dept, Bucharest, Romania
Malik, Najeeb Ur Rehman
[3
]
机构:
[1] Univ Politehn Bucuresti, Comp Sci Dept, Bucharest, Romania
[2] Univ Mediterranea Reggio Calabria, DIIES Dept, Calabria, Italy
[3] Univ Teknol Malaysia Johar Bahru, Elect Dept, Skudai, Johor, Malaysia
来源:
2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB)
|
2020年
基金:
欧盟地平线“2020”;
关键词:
Covid-19;
chest X-ray images;
convolution neural network;
deep learning;
D O I:
暂无
中图分类号:
R19 [保健组织与事业(卫生事业管理)];
学科分类号:
摘要:
COVID-19 typically known as Coronavirus disease is an infectious disease caused by a newly discovered coronavirus. Currently detection of coronovirus depends on factors like the patients' signs and symptoms, location where the person lives, travelling history and close contact with any COVID-19 patient. In order to test a COVID-19 patient, a healthcare provider uses a long swab to take a nasal sample. The sample is then tested in a laboratory setting. If person is coughing up then the saliva (sputum), is emitted for testing. The diagnosis becomes even more critical when there is a lack of reagents or testing capacity, tracking the virus and its severity and coming in contact with COVID-19 positive patients by a healthcare practitioner. In this scenario of COVID-19 pendamic, there is a need of streaming diagnosis based on retrospective study of laboratory data in form of chest X-rays using deep learning. This paper proposed a demystify technique to detect COVID-19 using assembling medical images with the help of deep nets. The study shows promising results with accuracy of 91.67% for diagnosis of COVID-19 and 100\% accuracy in proving the survival ratio.
机构:
Natl Res Council Italy, 310 Cedar St,Lauder Hall,Suite 118, New Haven, CT 06510 USA
Yale Univ, Sch Med, Global Oncol, Yale Comprehens Canc Ctr, 310 Cedar St,Lauder Hall,Suite 118, New Haven, CT 06510 USANatl Res Council Italy, 310 Cedar St,Lauder Hall,Suite 118, New Haven, CT 06510 USA
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
Oslo Univ Hosp, Dept Diagnost Phys, Oslo, NorwayStanford Univ, Dept Radiol, Stanford, CA 94305 USA
Grovik, Endre
Yi, Darvin
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USAStanford Univ, Dept Radiol, Stanford, CA 94305 USA
Yi, Darvin
Iv, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Radiol, Stanford, CA 94305 USA
Iv, Michael
Tong, Elizabeth
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Radiol, Stanford, CA 94305 USA
Tong, Elizabeth
论文数: 引用数:
h-index:
机构:
Rubin, Daniel
Zaharchuk, Greg
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Radiol, Stanford, CA 94305 USA
机构:
Natl Res Council Italy, 310 Cedar St,Lauder Hall,Suite 118, New Haven, CT 06510 USA
Yale Univ, Sch Med, Global Oncol, Yale Comprehens Canc Ctr, 310 Cedar St,Lauder Hall,Suite 118, New Haven, CT 06510 USANatl Res Council Italy, 310 Cedar St,Lauder Hall,Suite 118, New Haven, CT 06510 USA
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
Oslo Univ Hosp, Dept Diagnost Phys, Oslo, NorwayStanford Univ, Dept Radiol, Stanford, CA 94305 USA
Grovik, Endre
Yi, Darvin
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Biomed Data Sci, Stanford, CA 94305 USAStanford Univ, Dept Radiol, Stanford, CA 94305 USA
Yi, Darvin
Iv, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Radiol, Stanford, CA 94305 USA
Iv, Michael
Tong, Elizabeth
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Radiol, Stanford, CA 94305 USA
Tong, Elizabeth
论文数: 引用数:
h-index:
机构:
Rubin, Daniel
Zaharchuk, Greg
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Radiol, Stanford, CA 94305 USAStanford Univ, Dept Radiol, Stanford, CA 94305 USA