High energy density and high working voltage of a quasi-solid-state supercapacitor with a redox-active ionic liquid added gel polymer electrolyte

被引:30
作者
Geng, Cheng-Long [1 ,2 ]
Fan, Le-Qing [1 ,2 ]
Wang, Chun-Yan [1 ,2 ]
Wang, Yong-Lan [1 ,2 ]
Sun, Si-Jia [1 ,2 ]
Song, Ze-Yu [1 ,2 ]
Liu, Na [1 ,2 ]
Wu, Ji-Huai [1 ,2 ]
机构
[1] Huaqiao Univ, Coll Mat Sci & Engn, Fujian Key Lab Photoelect Funct Mat, Xiamen 361021, Fujian, Peoples R China
[2] Minist Educ, Engn Res Ctr Environm Friendly Funct Mat, Xiamen 361021, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
DOUBLE-LAYER; PERFORMANCE; CARBON; STORAGE; SEPARATOR; HYBRID; CAPACITORS; BATTERIES; MOLYBDATE; HYDROGEL;
D O I
10.1039/c9nj04769g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To increase the energy density of quasi-solid-state supercapacitors, a redox-active gel polymer electrolyte (GPE) was prepared by evaporating the excess water in a neutral gel that consists of polyvinyl alcohol (PVA), Na2SO4 and the ionic liquid (IL) N-butyl-N-methylpyrrolidinium bromide (Pyr(14)Br). The influence of IL Pyr(14)Br on the ionic conductivity of GPE was investigated. The maximum ionic conductivity of PVA-Na2SO4-Pyr(14)Br GPE can reach 27.1 mS cm(-1). The optimized GPE was assembled with two activated carbon electrodes into a quasi-solid-state supercapacitor. The electrochemical performances of this supercapacitor were evaluated by cyclic voltammetry, galvanostatic charge/discharge, electrochemical impedance spectroscopy and self-discharge measurements. The assembled supercapacitor exhibits a high energy density of 33.0 W h kg(-1), which is due to the wide working voltage (2.0 V) as a result of the strong solvation of Na+ cations and SO42- anions and the production of an additional pseudocapacitive contribution from the Br-/Br-3(-) redox reaction at the electrolyte/electrode interface. This supercapacitor exhibits outstanding cyclic stability with an 81.0% capacitance retention ratio after 8000 charge/discharge cycles. Moreover, this supercapacitor presents good self-discharge behavior.
引用
收藏
页码:18935 / 18942
页数:8
相关论文
共 50 条
  • [31] Polyacrylamide gel electrolyte for high-performance quasi-solid-state electrochromic devices
    Cai, Haojie
    Chen, Zhe
    Guo, Shuang
    Ma, Dongyun
    Wang, Jinmin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 256
  • [32] Symmetric All-Solid-State Supercapacitor Operating at 1.5 V Using a Redox-Active Gel Electrolyte
    Kundu, Arpan
    Fisher, Timothy S.
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (11): : 5800 - 5809
  • [33] Employment of ionic liquid-imbibed polymer gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells
    Li, Qinghua
    Tang, Qunwei
    Du, Nan
    Qin, Yuancheng
    Xiao, Jin
    He, Benlin
    Chen, Haiyan
    Chu, Lei
    JOURNAL OF POWER SOURCES, 2014, 248 : 816 - 821
  • [34] Energy enhancement of quasi-solid-state supercapacitors based on a non-aqueous gel polymer electrolyte via a synergistic effect of dual redox additives diphenylamine and potassium iodide
    Yadav, Neetu
    Hashmi, S. A.
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (35) : 18266 - 18279
  • [35] A Quasi-Solid-State Sodium-Ion Capacitor with High Energy Density
    Wang, Faxing
    Wang, Xiaowei
    Chang, Zheng
    Wu, Xiongwei
    Liu, Xiang
    Fu, Lijun
    Zhu, Yusong
    Wu, Yuping
    Huang, Wei
    ADVANCED MATERIALS, 2015, 27 (43) : 6962 - +
  • [36] A semi-transparent polyurethane/porous wood composite gel polymer electrolyte for solid-state supercapacitor with high energy density and cycling stability
    Hou, Pu
    Gao, Chenxiang
    Wang, Jian
    Zhang, Jiuzhou
    Liu, Yang
    Gu, Jiyou
    Huo, Pengfei
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [37] A quasi-solid-state rechargeable cell with high energy and superior safety enabled by stable redox chemistry of Li2S in gel electrolyte
    Meng, Xiangyu
    Liu, Yuzhao
    Wang, Zhiyu
    Zhang, Yizhou
    Wang, Xingyu
    Qiu, Jieshan
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (04) : 2278 - 2290
  • [38] Tough and redox-mediated alkaline gel polymer electrolyte membrane for flexible supercapacitor with high energy density and low temperature resistance
    Yang, Jia
    Hu, Xiaoyi
    Fang, Xiaohan
    Fan, Lidan
    Qin, Gang
    Zhang, Ziyue
    Xu, Jingyi
    Liang, Ye
    Chen, Qiang
    JOURNAL OF MEMBRANE SCIENCE, 2022, 650
  • [39] Solid-state graphene-based supercapacitor with high-density energy storage using ionic liquid gel electrolyte: electrochemical properties and performance in storing solar electricity
    Obeidat, Amr M.
    Luthra, Vandna
    Rastogi, A. C.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (06) : 1667 - 1683
  • [40] Improving the energy density of quasi-solid-state electric double-layer capacitors by introducing redox additives into gel polymer electrolytes
    Fan, Le-Qing
    Zhong, Ji
    Wu, Ji-Huai
    Lin, Jian-Ming
    Huang, Yun-Fang
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (24) : 9011 - 9014