Quantum repeaters in space

被引:43
作者
Liorni, Carlo [1 ]
Kampermann, Hermann [1 ]
Bruss, Dagmar [1 ]
机构
[1] Heinrich Heine Univ, Inst Theoret Phys 3, Univ Str 1, D-40225 Dusseldorf, Germany
来源
NEW JOURNAL OF PHYSICS | 2021年 / 23卷 / 05期
基金
欧盟地平线“2020”;
关键词
satellite links; quantum repeaters; quantum networks; quantum key distribution; quantum internet; KEY DISTRIBUTION; ENTANGLEMENT; PERFORMANCE; DESIGN; SYSTEM;
D O I
10.1088/1367-2630/abfa63
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Long-distance entanglement is a very precious resource, but its distribution is very difficult due to the exponential losses of light in optical fibres. A possible solution consists in the use of quantum repeaters, based on entanglement swapping (ES) or quantum error correction. Alternatively, satellite-based free-space optical links can be exploited, achieving better loss-distance scaling. We propose to combine these two ingredients, quantum repeaters and satellite-based links, into a scheme that allows to achieve entanglement distribution over global distances with a small number of intermediate untrusted nodes. The entanglement sources, placed on satellites, send quantum states encoded in photons towards orbiting quantum repeater stations, where ES is performed. The performance of this repeater chain is assessed in terms of the secret key rate achievable by the BBM92 cryptographic protocol. We perform a comparison with other repeater chain architectures and show that our scheme, even though more technically demanding, is superior in many situations of interest. Finally, we analyse strengths and weaknesses of the proposed scheme and discuss exemplary orbital configurations. The integration of satellite-based links with ground repeater networks can be envisaged to represent the backbone of the future quantum internet.
引用
收藏
页数:15
相关论文
共 70 条
  • [1] Quantum repeaters and quantum key distribution: Analysis of secret-key rates
    Abruzzo, Silvestre
    Bratzik, Sylvia
    Bernardes, Nadja K.
    Kampermann, Hermann
    van Loock, Peter
    Bruss, Dagmar
    [J]. PHYSICAL REVIEW A, 2013, 87 (05)
  • [2] Multimode quantum memory based on atomic frequency combs
    Afzelius, Mikael
    Simon, Christoph
    de Riedmatten, Hugues
    Gisin, Nicolas
    [J]. PHYSICAL REVIEW A, 2009, 79 (05):
  • [3] All-photonic quantum repeaters
    Azuma, Koji
    Tamaki, Kiyoshi
    Lo, Hoi-Kwong
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [4] Progress in satellite quantum key distribution
    Bedington, Robert
    Arrazola, Juan Miguel
    Ling, Alexander
    [J]. NPJ QUANTUM INFORMATION, 2017, 3
  • [5] Bennett C H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
  • [6] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [7] QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM
    BENNETT, CH
    BRASSARD, G
    MERMIN, ND
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (05) : 557 - 559
  • [8] Concentrating partial entanglement by local operations
    Bennett, CH
    Bernstein, HJ
    Popescu, S
    Schumacher, B
    [J]. PHYSICAL REVIEW A, 1996, 53 (04): : 2046 - 2052
  • [9] Rate analysis for a hybrid quantum repeater
    Bernardes, Nadja K.
    Praxmeyer, Ludmila
    van Loock, Peter
    [J]. PHYSICAL REVIEW A, 2011, 83 (01):
  • [10] Bhaskar M. K., 2019, ARXIV190901323