Segmentation of photovoltaic module cells in uncalibrated electroluminescence images

被引:60
作者
Deitsch, Sergiu [1 ]
Buerhop-Lutz, Claudia [2 ]
Sovetkin, Evgenii [3 ]
Steland, Ansgar [4 ]
Maier, Andreas [1 ]
Gallwitz, Florian [5 ]
Riess, Christian [6 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Pattern Recognit Lab, Martensstr 3, D-91058 Erlangen, Germany
[2] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg, HI ERN, Immerwahrstr 2, D-91058 Erlangen, Germany
[3] Forschungszentrum Julich, Photovoltaik IEK5, D-52425 Julich, Germany
[4] Rhein Westfal TH Aachen, Inst Stat, Wullnerstr 3, D-52062 Aachen, Germany
[5] Nuremberg Inst Technol, Fac Comp Sci, Kesslerpl 12, D-90489 Nurnberg, Germany
[6] Friedrich Alexander Univ Erlangen Nurnberg, IT Secur Infrastruct Lab, Martensstr 3, D-91058 Erlangen, Germany
关键词
PV modules; EL imaging; Visual inspection; Lens distortion; Solar cell extraction; Pixelwise classification; EDGE-DETECTION; SOLAR-CELLS; DEFECT DETECTION; RIDGE DETECTION; RANDOM SEARCH; ALGORITHM; CALIBRATION; DISTORTION; SYSTEMS; CRACKS;
D O I
10.1007/s00138-021-01191-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High resolution electroluminescence (EL) images captured in the infrared spectrum allow to visually and non-destructively inspect the quality of photovoltaic (PV) modules. Currently, however, such a visual inspection requires trained experts to discern different kinds of defects, which is time-consuming and expensive. Automated segmentation of cells is therefore a key step in automating the visual inspection workflow. In this work, we propose a robust automated segmentation method for extraction of individual solar cells from EL images of PV modules. This enables controlled studies on large amounts of data to understanding the effects of module degradation over time-a process not yet fully understood. The proposed method infers in several steps a high-level solar module representation from low-level ridge edge features. An important step in the algorithm is to formulate the segmentation problem in terms of lens calibration by exploiting the plumbline constraint. We evaluate our method on a dataset of various solar modules types containing a total of 408 solar cells with various defects. Our method robustly solves this task with a median weighted Jaccard index of 94.47% and an F-1 score of 97.62%, both indicating a high sensitivity and a high similarity between automatically segmented and ground truth solar cell masks.
引用
收藏
页数:23
相关论文
共 93 条
[1]   Minimum area circumscribing Polygons [J].
Aggarwal, Alok ;
Chang, J. S. ;
Yap, Chee K. .
VISUAL COMPUTER, 1985, 1 (02) :112-117
[2]   Nonmetric calibration of camera lens distortion: Differential methods and robust estimation [J].
Ahmed, M ;
Farag, A .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (08) :1215-1230
[3]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[4]   SHAPE FROM TEXTURE [J].
ALOIMONOS, J .
BIOLOGICAL CYBERNETICS, 1988, 58 (05) :345-360
[5]  
[Anonymous], ADV NEUR IN
[6]  
[Anonymous], 2018, Standard IEC TS 60904-13:2018
[7]   Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique [J].
Anwar, Said Amirul ;
Abdullah, Mohd Zaid .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2014,
[8]   The Quickhull algorithm for convex hulls [J].
Barber, CB ;
Dobkin, DP ;
Huhdanpaa, H .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (04) :469-483
[9]  
Bergstra J., 2013, PMLR, P115, DOI DOI 10.5555/3042817.3042832
[10]  
Bergstra J., 2011, P 25 INT C NEUR INF, P24, DOI DOI 10.5555/2986459.2986743