Co-, N-, and S-Tridoped Carbon Derived from Nitrogen- and Sulfur-Enriched Polymer and Cobalt Salt for Hydrogen Evolution Reaction

被引:45
作者
Deng, Wenfang [1 ]
Jiang, Hongmei [1 ]
Chen, Chao [1 ]
Yang, Lu [1 ]
Zhang, Youming [1 ]
Peng, Shuqin [1 ]
Wang, Shuqin [1 ]
Tan, Yueming [1 ]
Ma, Ming [1 ]
Xie, Qingji [1 ]
机构
[1] Hunan Normal Univ, Coll Chem & Chem Engn, Key Lab Chem Biol & Tradit Chinese Med Res, Minist Educ China, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogen evolution reaction; Co-; N-; S-tridoped carbon; nitrogen- and sulfur-enriched polymer; cobalt complex; pyrolysis; OXYGEN REDUCTION; ACTIVE-SITES; ELECTRODE MATERIAL; RECENT PROGRESS; DOPED CARBON; EFFICIENT; CATALYSTS; GRAPHENE; ELECTROCATALYSTS; PHOSPHIDE;
D O I
10.1021/acsami.5b12666
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A series of cobalt and heteroatom (N and/or S) doped carbon materials were prepared and explored as electrocatalysts for hydrogen evolution reaction. (HER). The most active catalyst is a Co-, N-, and S-tridoped carbon (CoNS-C), which was prepared through heat treatment of nitrogen- and sulfur-enriched poly(m-aminobenzenesulfonic acid) and cobalt(II) nitrate, followed by acid leaching. The presence of cobalt-heteroatom complexes in CoNS-C is confirmed and identified as highly active molecule catalytic centers for HER. The overpotential of CoNS-C is 180 mV at 10 mA cm(-2) in 0.5 M aqueous H2SO4. Besides the high HER activity, the CoNS-C also shows excellent durability and can be produced readily in large quantities. This work may have provided a new and simple route in the design and batch-synthesis of highly active and durable carbonaceous electrocatalysts for HER.
引用
收藏
页码:13341 / 13347
页数:7
相关论文
共 51 条
[1]   Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity [J].
Benck, Jesse D. ;
Chen, Zhebo ;
Kuritzky, Leah Y. ;
Forman, Arnold J. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2012, 2 (09) :1916-1923
[2]   Electrochemical reduction of oxygen:: an alternative method to prepare active CoN4 catalysts [J].
Bouwkamp-Wijnoltz, AL ;
Visscher, W ;
van Veen, JAR ;
Tang, SC .
ELECTROCHIMICA ACTA, 1999, 45 (03) :379-386
[3]   Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction [J].
Cao, Bingfei ;
Veith, Gabriel M. ;
Neuefeind, Joerg C. ;
Adzic, Radoslav R. ;
Khalifah, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (51) :19186-19192
[4]   Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets [J].
Chen, Wei-Fu ;
Sasaki, Kotaro ;
Ma, Chao ;
Frenkel, Anatoly I. ;
Marinkovic, Nebojsa ;
Muckerman, James T. ;
Zhu, Yimei ;
Adzic, Radoslav R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (25) :6131-6135
[5]   A compartment-less nonenzymatic glucose-air fuel cell with nitrogen-doped mesoporous carbons and Au nanowires as catalysts [J].
Chu, Mi ;
Zhang, Yijia ;
Yang, Lu ;
Tan, Yueming ;
Deng, Wenfang ;
Ma, Ming ;
Su, Xiaoli ;
Xie, Qingji ;
Yao, Shouzhuo .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (12) :3600-3604
[6]   Two-Dimensional Metal-Organic Surfaces for Efficient Hydrogen Evolution from Water [J].
Clough, Andrew J. ;
Yoo, Joseph W. ;
Mecklenburg, Matthew H. ;
Marinescu, Smaranda C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (01) :118-121
[7]   Activated carbon nanotubes: a highly-active metal-free electrocatalyst for hydrogen evolution reaction [J].
Cui, Wei ;
Liu, Qian ;
Cheng, Ningyan ;
Asiri, Abdullah M. ;
Sun, Xuping .
CHEMICAL COMMUNICATIONS, 2014, 50 (66) :9340-9342
[8]   Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction [J].
Deng, Jiao ;
Ren, Pengju ;
Deng, Dehui ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (07) :2100-2104
[9]   Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction [J].
Deng, Jiao ;
Ren, Pengju ;
Deng, Dehui ;
Yu, Liang ;
Yang, Fan ;
Bao, Xinhe .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :1919-1923
[10]   Sulfur-doped porous carbon nanosheets as an advanced electrode material for supercapacitors [J].
Deng, Wenfang ;
Zhang, Yijia ;
Yang, Lu ;
Tan, Yueming ;
Ma, Ming ;
Xie, Qingji .
RSC ADVANCES, 2015, 5 (17) :13046-13051