Ultrathin g-C3N4/Mo:BiVO4 photoanode for enhanced photoelectrochemical water oxidation

被引:43
|
作者
Zeng, Guihua [1 ]
Wang, Xiaojun [1 ]
Yu, Xiang [2 ]
Guo, Jia [3 ]
Zhu, Yi [1 ]
Zhang, Yuanming [1 ]
机构
[1] Jinan Univ, Dept Chem, Guangzhou 510632, Guangdong, Peoples R China
[2] Jinan Univ, Analyt & Testing Ctr, Guangzhou 510632, Guangdong, Peoples R China
[3] Jinan Univ, Dept Ecol, Guangzhou 510632, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
BiVO4; photoanode; Graphitic carbon nitride (g-C3N4); Heterojunction; Metal doping; PEC water oxidation; EFFICIENT; PERFORMANCE; CATALYSTS; ARRAY; NANOSHEET; FILMS;
D O I
10.1016/j.jpowsour.2019.227300
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A g-C3N4/Mo:BiVO4 (CMB) heterojunction photoanode is constructed with enhanced photoelectrochemical (PEC) water oxidation performance, in which ultrathin g-C3N4 is coated on Mo-doped BiVO4. CMB shows a remarkable water oxidation photocurrent of 3.11 mA cm(-2) at 1.23 V vs. RHE, which is 3.21 times higher than pristine BiVO4. The maximal incident photon-to-current efficiency (IPCE) reaches 45.5% at 430 nm and the applied bias photo-to-current efficiency (ABPE) reaches 0.74% at 0.78 V vs. RHE, which are 2.62 and 5.76 times compared with pristine BiVO4, respectively. The amounts of hydrogen and oxygen generated by CMB are 18.58 and 9.32 mu mol within 1 h, which are 4.66 and 5.51 times higher than pristine BiVO4. The significant enhancements are attributed to the improvement of charge separation and acceleration of oxygen evolution reaction (OER) kinetics. Mo-dopant enhances charge separation due to its excellent electron transfer capability. Ultrathin g-C3N4 also boosts charge separation via forming a heterojunction with Mo:BiVO4 and promotes OER kinetics by accelerating the transfer of holes to the photoelectrode surface. The work testifies the promise of combing metal-doping with constructing heterojunctions using ultrathin g-C3N4 to enhance water oxidation performance, and provides an excellent reference for designing and constructing efficient photoanodes for PEC water oxidation.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] p-n Heterostructured BiVO4/g-C3N4 Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance
    Wang Ruyi
    Xu Guoliang
    Yang Lei
    Deng Chonghai
    Chu Delin
    Zhang Miao
    Sun Zhaoqi
    JOURNAL OF INORGANIC MATERIALS, 2023, 38 (01) : 87 - +
  • [2] A Zn: BiVO4/ Mo: BiVO4 homojunction as an efficient photoanode for photoelectrochemical water splitting
    Lee, Jae Myeong
    Baek, Ji Hyun
    Gill, Thomas Mark
    Shi, Xinjian
    Lee, SangMyeong
    Cho, In Sun
    Jung, Hyun Suk
    Zheng, Xiaolin
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (15) : 9019 - 9024
  • [3] Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst
    Safaei, Javad
    Ullah, Habib
    Mohamed, Nurul Aida
    Noh, Mohamad Firdaus Mohamad
    Soh, Mohd Fairus
    Tahir, Asif A.
    Ludin, Norasikin Ahmad
    Ibrahim, Mohd Adib
    Isahak, Wan Nor Roslam Wan
    Teridi, Mohd Asri Mat
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 234 : 296 - 310
  • [4] Enhanced photoelectrochemical water oxidation of a BiVO4/tetra(amino)phthalocyanine composite photoanode
    Sudi, M. Shire
    Zhao, Long
    Dou, Yuqin
    Yang, Xin
    Wang, Qi
    Wang, Aijian
    Zhu, Weihua
    JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2023, 27 (07N10) : 1434 - 1440
  • [5] Electrospinning Preparation of Nanostructured g-C3N4/BiVO4 Composite Films with an Enhanced Photoelectrochemical Performance
    Wang, Yan
    Sun, Jianyang
    Li, Jiang
    Zhao, Xu
    LANGMUIR, 2017, 33 (19) : 4694 - 4701
  • [6] Enhanced Photoelectrochemical Performance of the BiVO4/Zn:BiVO4 Homojunction for Water Oxidation
    Su, Jinzhan
    Liu, Cong
    Liu, Dongyu
    Li, Mingtao
    Zhou, Jinglan
    CHEMCATCHEM, 2016, 8 (20) : 3279 - 3286
  • [7] Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO4 and Mo:BiVO4 Thin Film Photoanodes
    Rohloff, Martin
    Anke, Bjoern
    Kasian, Olga
    Zhang, Siyuan
    Lerch, Martin
    Scheu, Christina
    Fischer, Anna
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (18) : 16430 - 16442
  • [8] Systematic engineering of BiVO4 photoanode for efficient photoelectrochemical water oxidation
    Liang, Zhiting
    Li, Meng
    Ye, Kai-Hang
    Tang, Tongxin
    Lin, Zhan
    Zheng, Yuying
    Huang, Yongchao
    Ji, Hongbing
    Zhang, Shanqing
    CARBON ENERGY, 2024, 6 (04)
  • [9] BiVO4 Ceramic Photoanode with Enhanced Photoelectrochemical Stability
    Zheng, Liren
    Wang, Minrui
    Li, Yujie
    Ma, Fahao
    Li, Jiyu
    Jiang, Weiyi
    Liu, Mu
    Cheng, Hefeng
    Wang, Zeyan
    Zheng, Zhaoke
    Wang, Peng
    Liu, Yuanyuan
    Dai, Ying
    Huang, Baibiao
    NANOMATERIALS, 2021, 11 (09)
  • [10] In -situ generation of g -C 3 N 4 on BiVO 4 photoanode for highly e fficient photoelectrochemical water oxidation
    Li, Siyuan
    Jiang, Yi
    Jiang, Wenchao
    Zhang, Yu
    Pan, Kai
    Wang, Song
    Hu, Chongyang
    Zhang, Lu-Hua
    Xia, Lixin
    APPLIED SURFACE SCIENCE, 2020, 523