Sums of powers of roots via Bell polynomials

被引:0
|
作者
Withers, Christopher S. [1 ]
Nadarajah, Saralees [2 ]
机构
[1] Callaghan Innovat, Lower Hutt, New Zealand
[2] Univ Manchester, Manchester M13 9PL, Lancs, England
关键词
Bell polynomials; generating functions; Girard's formula; NEWTON-GIRARD; FORMULAS;
D O I
10.1080/10652469.2021.1939327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a function with a power series expansion and roots {x(n), 1 <= n < infinity}. We give two methods for obtaining the sums of powers of these roots, S-k = Sigma(infinity)(n=1)x(n)(k). The first is by expressing Girard's formula in terms of Bell polynomials. Explicit expressions are given for S-k for k <= 10. The second method is through generating functions.
引用
收藏
页码:388 / 399
页数:12
相关论文
共 50 条
  • [1] ON BELL POLYNOMIALS ASSOCIATED TO VASYUNIN COTANGENT SUMS
    Belhadj, Samir
    Goubi, Mouloud
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2022, 31 : 230 - 242
  • [2] Bell Polynomials for Sums and Products with Applications to Derivatives of Functions of Trigonometric and Hyperbolic Functions
    Withers, Christopher S.
    Nadarajah, Saralees
    UTILITAS MATHEMATICA, 2012, 89 : 113 - 127
  • [3] CONGRUENCES RELATED TO BELL POLYNOMIALS VIA A DIFFERENTIAL OPERATOR
    Benyattou, Abdelkader
    Mihoubi, Miloud
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 571 - 579
  • [4] Learning sums of powers of low-degree polynomials in the non-degenerate case
    Garg, Ankit
    Kayal, Neeraj
    Saha, Chandan
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 889 - 899
  • [5] Harmonic number identities via hypergeometric series and Bell polynomials
    Liu, Hongmei
    Wang, Weiping
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (01) : 49 - 68
  • [6] Relations between multivariate moments and cumulants via Bell polynomials
    Withers, Christopher S.
    Nadarajah, Saralees
    UTILITAS MATHEMATICA, 2013, 91 : 365 - 376
  • [7] ASYMPTOTIC EXPRESSIONS AND FORMULAS FOR FINITE SUMS OF POWERS OF BINOMIAL COEFFICIENTS INVOLVING SPECIAL NUMBERS AND POLYNOMIALS
    Kilar, Neslihan
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2023, 14 (01): : 51 - 67
  • [8] Congruences on the Bell polynomials and the derangement polynomials
    Sun, Yidong
    Wu, Xiaojuan
    Zhuang, Jujuan
    JOURNAL OF NUMBER THEORY, 2013, 133 (05) : 1564 - 1571
  • [9] Multivariate Bell polynomials
    Withers, Christopher S.
    Nadarajah, Saralees
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (11) : 2607 - 2611
  • [10] Generalized Bell polynomials
    Duran, Antonio J.
    JOURNAL OF APPROXIMATION THEORY, 2025, 306