A High-Order Statistical Tensor Based Algorithm for Anomaly Detection in Hyperspectral Imagery

被引:26
作者
Geng, Xiurui [1 ]
Sun, Kang [1 ]
Ji, Luyan [2 ]
Zhao, Yongchao [1 ]
机构
[1] Chinese Acad Sci, Inst Elect, Key Lab Technol Geospatial Informat Proc & Applic, Beijing, Peoples R China
[2] Tsinghua Univ, Ctr Earth Syst Sci, Key Lab Earth Syst Modelling, Minist Educ, Beijing 100084, Peoples R China
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
关键词
TARGET DETECTION; CLASSIFICATION;
D O I
10.1038/srep06869
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, high-order statistics have received more and more interest in the field of hyperspectral anomaly detection. However, most of the existing high-order statistics based anomaly detection methods require stepwise iterations since they are the direct applications of blind source separation. Moreover, these methods usually produce multiple detection maps rather than a single anomaly distribution image. In this study, we exploit the concept of coskewness tensor and propose a new anomaly detection method, which is called COSD (coskewness detector). COSD does not need iteration and can produce single detection map. The experiments based on both simulated and real hyperspectral data sets verify the effectiveness of our algorithm.
引用
收藏
页数:7
相关论文
共 20 条
[1]  
Chang C.I., 2003, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, V1
[2]   Anomaly detection and classification for hyperspectral imagery [J].
Chang, CI ;
Chiang, SS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (06) :1314-1325
[3]   Unsupervised target detection in hyperspectral images using projection pursuit [J].
Chiang, SS ;
Chang, CI ;
Ginsberg, IW .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07) :1380-1391
[4]   A Small Target Detection Method for the Hyperspectral Image Based on Higher Order Singular Value Decomposition (HOSVD) [J].
Geng, Xiurui ;
Ji, Luyan ;
Zhao, Yongchao ;
Wang, Fuxiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (06) :1305-1308
[5]   A selective KPCA algorithm based on high-order statistics for anomaly detection in hyperspectral imagery [J].
Gu, Yanfeng ;
Liu, Ying ;
Zhang, Ye .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (01) :43-47
[6]  
Harsanyi J. C., 1993, THESIS BALTIMORE
[7]  
Hsueh M, 2004, INT GEOSCI REMOTE SE, P3222
[8]   On the best rank-1 approximation of higher-order supersymmetric tensors [J].
Kofidis, E ;
Regalia, PA .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 23 (03) :863-884
[9]   Adaptive anomaly detection using subspace separation for hyperspectral imagery [J].
Kwon, HS ;
Der, SZ ;
Nasrabadi, NM .
OPTICAL ENGINEERING, 2003, 42 (11) :3342-3351
[10]  
Liu W., 2004, P IEEE INT GEOSC REM, P20