On complexity analysis of the primal-dual interior-point method for semidefinite optimization problem based on a new proximity function

被引:17
作者
Choi, Bo Kyung [1 ]
Lee, Gue Myung [1 ]
机构
[1] Pukyong Natl Univ, Div Math Sci, Pusan 608737, South Korea
关键词
Semidefinite optimization problem; Primal-dual interior-point methods; Kernel function; Proximity function; Complexity analysis; Worst-case iteration bound; ALGORITHMS;
D O I
10.1016/j.na.2009.05.078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to obtain new complexity results for a semidefinite optimization (SDO) problem. We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a large-update primal-dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we show that the worst-case iteration bound for our IPM is O(root n(log n)(q+1/q) log n/c), where q >= 1 (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E2628 / E2640
页数:13
相关论文
共 50 条
[41]   Complexity analysis of primal-dual interior-point methods for linear optimization based on a new efficient Bi-parameterized kernel function with a trigonometric barrier term [J].
Mousaab, Bouafia ;
Adnan, Yassine .
RAIRO-OPERATIONS RESEARCH, 2022, 56 (02) :731-750
[42]   A New Primal-Dual Predictor-Corrector Interior-Point Method for Linear Programming Based on a Wide Neighbourhood [J].
Shahraki, M. Sayadi ;
Mansouri, H. ;
Zangiabadi, M. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (02) :546-561
[43]   A primal-dual interior-point algorithm for quadratic programming [J].
Dominguez, Juan ;
Gonzalez-Lima, Maria D. .
NUMERICAL ALGORITHMS, 2006, 42 (01) :1-30
[44]   On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming [J].
Zhang, Y .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (02) :365-386
[45]   A primal-dual interior-point algorithm for quadratic programming [J].
Juan Dominguez ;
María D. González-Lima .
Numerical Algorithms, 2006, 42 :1-30
[46]   PRIMAL-DUAL INTERIOR-POINT ALGORITHMS FOR CONVEX QUADRATIC CIRCULAR CONE OPTIMIZATION [J].
Bai, Yanqin ;
Gao, Xuerui ;
Wang, Guoqiang .
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (02) :211-231
[47]   A unified kernel function approach to primal-dual interior-point algorithms for convex quadratic SDO [J].
Wang, Guoqiang ;
Zhu, Detong .
NUMERICAL ALGORITHMS, 2011, 57 (04) :537-558
[48]   Complexity of interior-point methods for linear optimization based on a new trigonometric kernel function [J].
Peyghami, M. Reza ;
Hafshejani, S. Fathi ;
Shirvani, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :74-85
[49]   A wide neighborhood primal-dual predictor-corrector interior-point method for symmetric cone optimization [J].
Shahraki, M. Sayadi ;
Mansouri, H. ;
Zangiabadi, M. ;
Mahdavi-Amiri, N. .
NUMERICAL ALGORITHMS, 2018, 78 (02) :535-552
[50]   A primal-dual interior-point algorithm for symmetric optimization based on a new kernel function with trigonometric barrier term yielding the best known iteration bounds [J].
Kheirfam B. .
Afrika Matematika, 2017, 28 (3-4) :389-406