Finite groups with some π-quasinormal minimal subgroups

被引:3
作者
Li, Y [1 ]
Wang, Y
机构
[1] Guangdong Coll Educ, Dept Math, Guangzhou 510303, Peoples R China
[2] Zhongshan Univ, Lingnan Coll, Guangzhou 510275, Peoples R China
[3] Zhongshan Univ, Sch Math, Guangzhou 510275, Peoples R China
关键词
pi-quasinormal subgroup; nilpotent group; p-nilpotent group; saturated formation;
D O I
10.1023/B:AMHU.0000023217.36582.b1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use pi-quasinormal condition on minimal subgroups to characterize the structure of a finite group through the theory of formation. We give some equivalent conditions of a nilpotent group or a saturated formation containing die. nilpotent groups. Our results generalize earlier theorems of Yokoyama, Ballester-Bolinches and Pedraza Aguilera.
引用
收藏
页码:213 / 222
页数:10
相关论文
共 16 条
[1]  
Asaad M, 1996, COMMUN ALGEBRA, V24, P2771
[2]   On minimal subgroups of finite groups [J].
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
ACTA MATHEMATICA HUNGARICA, 1996, 73 (04) :335-342
[3]   ETA-NORMALIZERS AND LOCAL DEFINITIONS OF SATURATED FORMATIONS OF FINITE-GROUPS [J].
BALLESTERBOLINCHES, A .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 67 (03) :312-326
[4]   FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE NORMAL [J].
BUCKLEY, J .
MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (01) :15-&
[5]   THE INFLUENCE OF MINIMAL P-SUBGROUPS ON THE STRUCTURE OF FINITE-GROUPS [J].
DERR, JB ;
DESKINS, WE ;
MUKHERJEE, NP .
ARCHIV DER MATHEMATIK, 1985, 45 (01) :1-4
[6]  
Doerk K., 1992, GRUYTER EXP MATH, V4
[7]  
Gorenstein D., 2007, FINITE GROUPS
[8]  
Huppert B., 1982, Finite Groups III
[9]  
HUPPERT B, 1968, ENDLICHE GRUPPEN 1
[10]   Automorphisms fixing elements of prime order in finite groups [J].
Isaacs, IM .
ARCHIV DER MATHEMATIK, 1997, 68 (05) :359-366