Existence results for degenerate quasilinear elliptic equations in weighted Sobolev spaces

被引:6
作者
Cavalheiro, Albo Carlos [1 ]
机构
[1] Univ Estadual Londrina, Dept Math, BR-86051990 Londrina, PR, Brazil
关键词
degenerate quasilinear elliptic equations; weighted Sobolev spaces; MINIMAL ASSUMPTIONS; REGULARITY;
D O I
10.36045/bbms/1267798504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we are interested in the existence of solutions for Dirichlet problem associated to the degenerate quasilinear elliptic equations -dIV [nu(x) A(x, u, del u)] + omega(x)A(0)(x, u(x)) = f(0) - Sigma(n)(j=1) D(f)f(f), on Omega in the setting of the weighted Sobolev spaces W(0)(l,p)(Omega,omega,nu)
引用
收藏
页码:141 / 153
页数:13
相关论文
共 18 条
[1]  
[Anonymous], 1997, QUASILINEAR ELLIPTIC, DOI DOI 10.1515/9783110804775
[2]  
[Anonymous], 2000, LECT NOTES MATH
[3]  
BENSOUSSAN A, 1988, ANN I H POINCARE-AN, V5, P347
[4]   REGULARITY FOR SOLUTIONS OF QUASI-LINEAR ELLIPTIC-EQUATIONS UNDER MINIMAL ASSUMPTIONS [J].
CHIARENZA, F .
POTENTIAL ANALYSIS, 1995, 4 (04) :325-334
[5]   Pseudo-monotonicity and degenerated or singular elliptic operators [J].
Drabek, P ;
Kufner, A ;
Mustonen, V .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 58 (02) :213-221
[6]   THE WIENER TEST FOR DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, E ;
JERISON, D ;
KENIG, C .
ANNALES DE L INSTITUT FOURIER, 1982, 32 (03) :151-182
[7]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[8]  
Franchi B., 1988, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V14, P527
[9]  
Fucik S., 1977, Function Spaces
[10]  
Garcia-Cuerva J., 1985, N HOLLAND MATH STUDI, V104