A direct algorithm for estimating land surface broadband albedos from MODIS imagery

被引:90
作者
Liang, SL [1 ]
机构
[1] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2003年 / 41卷 / 01期
基金
美国国家航空航天局;
关键词
broadband albedo; land surface; MODIS; multispectral imagery; remote sensing;
D O I
10.1109/TGRS.2002.807751
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Land surface albedo is a critical variable needed in land surface modeling. The conventional methods for estimating broadband albedos rely on a series of steps in the processing chain, including atmospheric correction, surface angular modeling, and narrowband-to-broadband albedo conversions. Unfortunately, errors associated with each procedure may be accumulated and significantly impact the accuracy of the final albedo products. In an earlier study, we developed a new direct procedure that links the top-of-atmosphere spectral albedos with land surface broadband albedos without performing atmospheric correction and other processes. In this paper, this method is further improved in several aspects and implemented using actual Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Several case studies indicated that this new method can predict land surface broadband albedos very accurately and eliminate aerosol effects effectively. It is very promising for global applications and is particularly suitable for nonvegetated land surfaces. Note that a Lambertian surface has been assumed in the radiative transfer simulation in this paper as a first-order approximation; this assumption can be easily removed as long as a global bidirectional reflectance distribution function climatology is available.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 33 条
[1]  
[Anonymous], 1994, Modern applied statistics with S-Plus
[2]  
[Anonymous], 2000, Remote Sensing Reviews, DOI [10.1080/02757250009532395, DOI 10.1080/02757250009532395]
[3]   MODTRAN cloud and multiple scattering upgrades with application to AVIRIS [J].
Berk, A ;
Bernstein, LS ;
Anderson, GP ;
Acharya, PK ;
Robertson, DC ;
Chetwynd, JH ;
Adler-Golden, SM .
REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) :367-375
[4]  
CHEN TS, 1984, J ATMOS SCI, V41, P156, DOI 10.1175/1520-0469(1984)041<0156:OTRBCS>2.0.CO
[5]  
2
[6]   Multi-angle Imaging SpectroRadiometer (MISR) - Instrument description and experiment overview [J].
Diner, DJ ;
Beckert, JC ;
Reilly, TH ;
Bruegge, CJ ;
Conel, JE ;
Kahn, RA ;
Martonchik, JV ;
Ackerman, TP ;
Davies, R ;
Gerstl, SAW ;
Gordon, HR ;
Muller, JP ;
Myneni, RB ;
Sellers, PJ ;
Pinty, B ;
Verstraete, MM .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1072-1087
[7]  
FRIEDMAN J, 1981, J AM STAT ASSOC, V76, P183
[8]   Remote sensing of forest change using artificial neural networks [J].
Gopal, S ;
Woodcock, C .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (02) :398-404
[9]  
Hartmann DL., 1999, EOS SCI PLAN, V1999, P39
[10]   AERONET - A federated instrument network and data archive for aerosol characterization [J].
Holben, BN ;
Eck, TF ;
Slutsker, I ;
Tanre, D ;
Buis, JP ;
Setzer, A ;
Vermote, E ;
Reagan, JA ;
Kaufman, YJ ;
Nakajima, T ;
Lavenu, F ;
Jankowiak, I ;
Smirnov, A .
REMOTE SENSING OF ENVIRONMENT, 1998, 66 (01) :1-16